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1 INTRODUCTION
1.1 Background

Since the mid-20th century, human impact on ecosystems has been more profound than at any

other time in history (World Health Organization, 2005). Evaluating urban vitality (UV) based on

human activity intensity and analyzing the driving relationship between UV, land functions, and

their coupling are critical for promoting regional sustainability, enhancing urban resilience,

supporting compact growth, and optimizing the living environment and human well-being (Qiao

& Huang, 2024).

1.1.1 Urbanization & human-land relationship

As Cai et al.(2021) highlighted, global urbanization is marked by two key features: the migration

of populations from rural to urban areas and the rapid expansion of artificial surfaces. These

human-land dynamics interact to reshape land-use patterns, creating growth cycles fueled by

high population density and industrial concentration, which have emerged as primary drivers of

urban development (X. Liu et al., 2020).

In 1979, Northam approximated the urban development process using an "S"-shaped empirical

curve (Northam, 1979), which can be divided into three stages: an initial stage with low

urbanization levels (<30%) and slow growth, an acceleration stage marked by rapid increases in

urbanization levels, and a terminal stage where urbanization levels are high (>70%) and

development stabilizes (Mulligan, 2006). As cities expand, numerous urban problems emerge,

notably the unsustainable risks posed by the unrestrained expansion of construction land or the

imbalance between urban development and population growth. Given the limitations of land

carrying capacity, urbanization inevitably slows down, leading to over-concentration of

populations in some areas and insufficient resource supply, resulting in phenomena such as

"counter-urbanization" and "urban expansion" across regions (Liao & Liang, 2024). According to

the 2022 World Cities Report, by 2070, urban land expansion is expected to occur primarily in

low-income countries, and without effective planning, urban sprawl could become a widespread

phenomenon.

As one of the fastest-urbanizing developing countries in the world, both domestic and
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international scholars have conducted extensive theoretical and empirical research on key issues

such as healthy urbanization, urban-rural integration, and land use efficiency (Bai et al., 2014; Li

YuRui et al., 2015; Y. Liu et al., 2014; Qiao & Huang, 2024). There is a widespread consensus on

issues such as China's inflated population urbanization rate and the disorderly, even uncontrolled,

expansion of urbanized land. As urbanization deepens, the dynamics of human-land interactions

are continually evolving. In March 2014, the Chinese government issued the National New-type

Urbanization Plan (2014-2020), elevating the issue to a national strategic level and highlighting

the urgent need to address the significant imbalance between the urbanization of land and

population, as well as the inefficiency and expansion of construction land use. This plan

underscores the transformative impact of urbanization on human-land relationships in China.

1.1.2 Urban and vitality development

A vibrant city can continuously expand with high efficiency (Montgomery, 1998). The New

Urban Agenda emphasizes that residents are not only the ultimate beneficiaries of urban

development but also key participants in the development process. This perspective has made the

measurement of residents' activities/ vitality as a key research focus (Qiao & Huang, 2024).

As illustrated in Figure 1, research on UV has attracted widespread attention over the past 25

years. Notably, since 2010, the number of related articles has increased, with a sharper rise than

the past decade, particularly after 2015. The English-language literature data was sourced from

the Web of Science (WOS) database, particularly from the SCI core collection. The search query

applied was: TS = (urban plan* OR city plan* OR landscape*) AND TS=vitality, covering the

period from 2001 to 2024. After excluding irrelevant articles, a total of 340 English-language

articles were selected. For Chinese literature, data was obtained from the

SCI/CSSCI/EI/CSCD/Peking University Core Journals collection in the China National

Knowledge Infrastructure (CNKI), spanning from 2001 to 2024. The search focused on themes

such as "城市活力" (urban vitality), "景观活力" (landscape vitality), and "空间活力" (spatial

vitality) (Nie et al., 2021). After removing irrelevant articles, a total of 399 Chinese-language

articles were compiled.
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Figure 1 Temporal Distribution of the Number of Literature on UV in China &Abroad (2024-06).

By 2030, China's urbanization rate is expected to reach 73%, with cities continuing to expand

and urban construction land further increasing (Desa, 2014). Synchronizing the building of urban

vitality (UV) is important for achieving the United Nations' 2030 Agenda and Sustainable

Development Goals (SDGs) (Cheng et al., 2022) at this year. In particular, understanding the

response of vitality to land systems is essential for optimizing living environments, constructing

productive and ecological spaces, and enhancing the management of human-land relations (Qiao

& Huang, 2024). The China State Council's "Opinions on Further Strengthening Urban Planning,

Construction, and Management" clearly states the need to "strive to build harmonious, livable,

vibrant, and distinctive modern cities."

1.1.3 A new stage of urbanization in China

Since China implemented the Reform and Opening-up policy in 1978, urbanization has been a

crucial driving force behind socio-economic development (Y. Long & Wu, 2016). In the initial

stages, urbanization was primarily driven by the growth of urban populations and infrastructure

development, leading to a rapid increase in the urbanization rate from 17.92% in 1978. After

1996, China’s urbanization rate surpassed 30%, entering an acceleration phase. By 2010, the rate

had reached 49.95%, with an average annual increase of 1.37 percentage points during this

period.

Currently, the urbanization rate has reached 66.16% (as of 2023), and the growth rate has

gradually slowed (L. Li et al., 2022; T. Li, 2019). Overall, the urbanization process in China is

expected to follow an S-shaped growth curve (Y. Long & Wu, 2016). In addition, compared to

2021, China's population decreased by 1.09 million in 2022. This marks not only the first decline
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in decades but also indicates a trend of sustained negative growth projected for the subsequent

three years (Figure.2). This suggests that China has entered a phase of negative population

growth. In 2024, several cities renamed their Housing and Urban-Rural Development Bureaus to

"Housing and Urban Renewal Bureaus."

Figure 2 Changes in Chinese population (Source: China Statistical Yearbook).

In this new era, "Expanding cities, shrinking population" encapsulates the human-land

relationship challenges that Chinese cities face (Kuang et al., 2016; Luo et al., 2018; Y. Zhang et

al., 2024). Within this paradox lies the imbalance between land efficiency and the in spatial

structure, which hinders high-quality urban development and manifests as a decline in UV.

Despite the increasing modernization of the urban physical design, many functions are not

perceived by the majority of the population, and human interaction with urban spaces is not

effectively promoted. The inclusiveness of cities as habitats is diminished by factors such as

textural damage, leading to a loss of urban vitality as a side effect of rapid urbanization. Urban

decay or sprawl, such as “ghost cities” in China and “marginal villages” in Japan, is common,

accompanied by imbalances in employment and housing, rising vacancy rates, population loss,

and ecological degradation (Y. Long &Wu, 2016).

Currently, urban development in China faces tight constraints, and planning practices are

gradually shifting from expansion-oriented to stock-oriented strategies, highlighting an urgent

need to enhance the functionality of built-up areas and improve quality of life (Zhu et al., 2020).

Developing a more comprehensive land function assessment framework will provide crucial

guidance for balancing the potential adverse effects of dense construction, supporting future



7

urban planning and land resource management (X. Wang, Yao, et al., 2023).

1.2 Aims and questions

As outlined in the background, in the new phase of China's population growth and urbanization,

enhancing urban vitality has become both a goal and a driving force for the development of

major cities in this era. Land, as a fundamental resource for urban social development and a

crucial carrier of human activities, requires a shift in its comprehensive utilization to meet the

evolving demands of the era. Whether it is smart land development or compact development

strategies to combat urban sprawl, or enhancing urban vitality through mixed-use and functional

integration, it is essential in this new era to construct a comprehensive and rational framework

for evaluating vitality and land use. And, it is necessary to explore the relationship between

vitality and land based on new data (Artmann et al., 2019; De Roo, 2000).

1.2.1 Research questions

The core research question of this paper is: how to reasonably develop land functions to enhance

urban vitality and achieve high-quality urban development. Based on the

"Pattern-Mechanism-Response" framework, this question can be expanded into several specific

areas for in-depth research.

1.2.1.1 “Pattern” research

Q1: Based on data characteristics, how can we construct a vitality framework

incorporating a temporal dimension to quantitatively describe UV?

Over the past 60 years, research on "vitality" has gradually shifted from qualitative studies to

quantitative analyses (Jacobs, 1961). Vitality, driven by residents' activities as a long-term

process, requires consideration not only of activity intensity but also of temporal variations

(Sulis et al., 2018). Therefore, this study hypothesizes the following: at the annual scale, vitality

assessments should account for seasonal and climatic changes, using four seasons as a complete

cycle; at the quarterly scale, urban vitality should distinguish between work and rest, using a

week as a full cycle, with Monday to Friday as workday scenarios and Saturday to Sunday as

weekend scenarios; at the daily scale, distinctions should be made between residents' active

periods and sleep periods, with further attention to variability and stability at the hourly scale.

Q2: Based on the theory of land multifunctionality, how can we characterize land functions
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in multiple dimensions, specifically, how can we quantitatively assess various land functions

and their spatial patterns?

The current study adopts a "socio-ecological" land function assessment framework (X. Wang,

Yao, et al., 2023). Land social function (LSF) includes traditional "social services," such as

transportation networks and residential density as basic services, as well as "economic outputs,"

such as GDP per unit of land and the density of commercial establishments. Land ecological

function (LEF) includes basic green infrastructure areas and broader vegetation conditions and

ecological benefits. The basic assumption in the assessment is that LSF is primarily supported by

"artificial surfaces" in land cover, while LEF is supported by "green infrastructure" in land cover.

However, even the same type of land may exhibit varying intensities of comprehensive functions

depending on its characteristics and the types and quantities of resources it supports.

1.2.1.2 “Mechanism” research

Q3: Based on the integration of vitality and land theories, what are the factors influencing

urban vitality, and what are the specific mechanisms behind this influence? This question

can be further divided into:

 Q3.1:What is the impact of land coupling on UV?

 Q3.2:What is the impact of land functions on UV?

 Q3.3:What is the impact of land factors on UV?

Land Coupling: Current research indicates that within built-up areas, or areas serving social

functions, the mix of land uses—such as commercial, residential, and recreational functions—is

positively correlated with UV (or UV at specific times) (S. Tang & Ta, 2022; A. Zhang et al.,

2021). However, there is limited research on the relationship between the broader mix of

socio-ecological functions and UV. In exploring the coupling and coordination of

socio-ecological functions, the basic assumption is that the spatial distributions of these two

sub-functions are not completely aligned. This spatial asynchrony allows for discussions on the

spatial heterogeneity of the coupling coordination degree between the two systems.

Land Function: Previous studies indicate that UV has a higher dependency on the supply of

urban social functions (Cen et al., 2024; L. Fan & Zhang, 2022). This is primarily determined by

the inherent attributes of "urban" areas, as urbanization leads to the localized concentration of

various production factors, including population. However, at different stages of development,
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UV's demand for social and ecological services varies. Specifically, in the later stages of

urbanization, residents' demand for ecosystem services increases significantly. Therefore, this

issue involves not only qualitative comparisons but also aims to derive a quantitative correlation

ratio. The basic assumption is that UV in the study area currently has a higher dependency on the

supply of social functions but also has a certain demand for ecological functions.

Land Factors: The driving process of factor X on variable Y is not globally homogeneous,

which is the fundamental assumption of geographically weighted regression (GWR). In this

study, this assumption is further refined: Firstly, due to the complexity of geographical processes,

driving factors typically do not act independently but rather in coordination (H. Wang et al.,

2021). This means that when enhancing UV through the control of land factors, paired factors

often achieve better results. Secondly, depending on the context, the same factors should exhibit

different driving characteristics, such as driving coefficients or the homogeneity of impact

(bandwidth), in different vitality scenarios (workdays/weekends).

1.2.1.3 “Response” research

Q4: How should land development policies be formulated to foster urban vitality? What

are the corresponding planning responses?

Based on the preceding issues and the research findings on the driving relationships between

land and UV, and considering the broader context of national spatial planning in the new era,

multi-scale planning recommendations should be made for both spatial configurations and

underlying mechanisms.

Response to Spatial Patterns Heterogeneity: At the macro and meso scales, planning

recommendations should be proposed for enhancing vitality and land use patterns, thereby

improving the spatial coordination of urban functions.

Response to Mechanism-Driven Factors: To enhance UV, policy recommendations at the

macro scale should be guided by the land coupling coordination. At the meso scale, the

optimization of land functions should be prioritized, with detailed planning tailored to specific

functional areas. At the micro scale, planning should be based on land elements, focusing on

refined land use and the allocation of elements to strengthen UV.

1.2.2 Research framework & aims
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The theoretical framework of this study can be simplified into three key components (Figure.3):

1. UV assessment, 2. Land function assessment, and 3. Exploration of the relationship between

UV and land functions.

Figure 3 General Theoretical Framework.

This paper introduces a novel approach for evaluating UV using Baidu Map Human Mobility

Data (Figure.4). Unlike traditional methods that directly rely on activity intensity, this method

fully utilizes the temporal dimension of the data, employing self-calibration to achieve more

accurate UV measurements. In this study, UV is differentiated based on residents' activity

patterns across multiple scenarios, particularly in Weekend and Workday contexts.

Figure 4 Urban Vitality Assessment Framework.

Second Section (Figure.5): The study assesses land functions using a variety of data sources. By

applying a socio-ecological subsystem framework, we gained a comprehensive understanding of

the spatial variability of land-use multifunctionality in terms of quantity, quality, and structure.

Moreover, based on the intra-group Coupling Coordination Degree (CCD), we identified
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communities formed by the spatial clustering of various functions. By calculating the inter-group

CCD, we further integrated land functions, achieving a detailed and comprehensive

understanding of land functionality.

Figure 5 Land Functional Assessment and Coupled Coordination Framework.

Finally (Figure.6), we examined the relationship between vitality and land functions. Spatial

correlation analysis demonstrated UV's dependence on socio-ecological land functions. Through

Multi-Scale Geographically Weighted Regression (MGWR) and the Optimal Parameters-based

Geographical Detector (OPGD), we deeply explored the interactive relationships between

various land indicators and UV under different scenarios, as well as the driving forces and

bandwidth changes related to UV. Lastly, using the CCD model, we validated the correlation

between functional mixing and vitality, and further identified areas with poor CCD. By

confirming the predominant functions within these areas, we provided planning

recommendations to enhance UVI.
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Figure 6 Vitality- Land Driving Relationship Framework.

1.2.3 Chapter contents

Chapter 1: This chapter introduces the fundamental background of the study, laying the

groundwork for the thesis. It extracts specific research objectives and questions from the

background information, emphasizing the significance and necessity of the research.

Chapter 2: This chapter delves into theoretical issues related to UV and land functions. It begins

by clarifying key terms and defining concepts that lack clear definitions. The first section

reviews the evolution of the concept of "urban vitality," discussing the changes in basic data

sources and assessment methods as vitality evaluation has progressed over time, and examines

factors influencing vitality. The second section explains the conceptual changes regarding land

functions/multifunctionality and introduces commonly used land function assessment

frameworks, such as the "socio-ecological" framework. The third section discusses the impact of

land functions on UV, with particular emphasis on mainstream methods adopted domestically

and internationally to enhance urban vitality.

Chapter 3: This chapter provides a detailed description of the study area, primary data sources,

and research models. In introducing the study area, it not only provides basic locational

information but also discusses the generality and uniqueness of the area selection concerning the

background issues raised in Chapter 1. Finally, it outlines the specific methods employed to

assess UV, land functions, and the relationships between them.

Chapter 4: This chapter presents the quantitative evaluation results of UV and land functions,

followed by a further spatial pattern analysis. It stratifies the driving effects of different land

evaluation factors on multi-scenario UV. At the system level, it analyzes the dependency and

prioritization of UV on land ecological function (LEF) and social function (LSF). At the

coupling coordination level, it illustrates how UV varies with the CCD, identifies the distribution

of UV across different CCDs based on 2023 data. Finally, the effect of land factors on UV was

the most important and the interaction between factors was further explored.

Chapter 5: This chapter introduces the new scientific contributions of this study, particularly

how it addresses existing research gaps.

Chapter 6: This chapter summarizes the main findings of the study, reflects on the initially set
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objectives and questions, and evaluates their broader implications. It also provides planning

recommendations based on the research findings. Additionally, this chapter discusses the

limitations of the study and suggests directions for future improvements (Figure.7).

Figure 7 Contents of Individual Chapters.
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2 LITERATURE REVIEW
2.1 Urban vitality assessment

Vitality is a crucial driver of sustainable urban development (Caprotti et al., 2017) and an

essential indicator for evaluating the quality of urban environments (Paköz & Işık, 2022; S. Tang

& Ta, 2022). Quantifying UV and understanding its interactions with various urban subsystems,

particularly the land system, are crucial for the rational planning of human-land relationships.

2.1.1 Concept origins & development

Jane Jacobs (1961) was the first to introduce the concept of "vitality" in urban planning,

associating it with street activity and diversity (Jacobs, 1961). She argued that the essence of UV

lies in the continuous activity of people throughout the day and proposed four key conditions to

promote and sustain urban diversity: (1) Neighborhoods should have at least two primary

functions to attract and maintain diverse flows of people, thereby providing ample public

amenities (mixed-use); (2) Blocks should be short to facilitate pedestrian movement and allow

easy changes in direction (short streets); (3) Buildings should vary in age and condition to reflect

economic diversity (building age); (4) The density of people should reach a specific level,

encompassing both local residents and visitors (people density). These principles marked the

qualitative phase of research on urban vitality.

Later, Alexander (1965) suggested that the inherent qualities of natural cities shape their vitality

(Alexander, 1965) , while Kevin Lynch (1984) expanded this idea, stating that vitality reflects

how well urban forms support essential functions, ecological needs, and human capabilities

(Lynch, 1984). Maas (1984) characterized UV as a spatial quality emerging from diverse

commercial opportunities and a varied, dense pedestrian population (Maas, 1984). Montgomery

(1998) considered vitality a hallmark of successful urban areas, manifested through high levels

of human and street activity (Montgomery, 1995, 2017). Chinese scholars, such as Jiang (2007)

(Jiang, 2007), developed a framework grounded in social, economic, and cultural dimensions,

positing that UV is the lifeblood of a city, reflecting its capacity to provide a humanized living

environment for its residents.

UV lacks a precise definition in academic literature but generally includes two key aspects: (1)
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the intensity and diversity of human activities. Common indicators used to measure the intensity

of vitality include "activity," "aggregation," and "mobility" of residents (Montgomery, 1998; L.

Tang et al., 2022; C. Wu et al., 2018). (2) The role of the city in sustaining human life, which

emphasizes interactions between individuals and the urban environment. Drawing on complex

systems theory, this concept of "vitality" describes cities as interconnected, dynamic, and organic

entities composed of multiple systems (Portugali, 2016).

Building on the conceptual framework of urban vitality discussed earlier, Long and Zhou (Y.

Long & Zhou, 2016) utilized big data to develop a framework for analyzing factors influencing

vitality at the urban street level and employed regression analysis to examine how these factors

affect various types of functional streets. Furthermore, scholars have long used multi-source data

and methodologies such as correlation analysis and machine learning to explore the mechanisms

influencing regional vitality. These studies not only reveal the impact of various forms and

elements on urban vitality but also propose corresponding optimization strategies to further

promote sustainable urban development (H. Guo et al., 2020; Z. Wang et al., 2024).

2.1.2 Vitality assessment datasets & methods

Early studies on UV primarily focused on constructing evaluation indicators, constrained by

limitations in data acquisition. Traditional sources of survey data include government statistics

and field research data. The former consists of macro socio-economic indicators (Huang et al.,

1998), statistical yearbook data, employment rates (Harvey, 2001), and housing and land prices,

typically used to assess UV at a macro scale from sociological and economic perspectives.

Although this type of data is relatively comprehensive, it lacks specificity. Conversely, field

research data includes attributes of the built environment, land use, human activity

characteristics, and survey questionnaires. Such data requires extensive fieldwork and often lacks

sufficient spatiotemporal precision (Biddulph, 2012; Gehl & Architects, 2004), making it

challenging to capture the dynamic characteristics of UV. Consequently, these studies are often

qualitative and present certain limitations.

With the advent of the information and digital age, new urban insights have emerged through the

use of OpenStreetMap (OSM) GPS data, social media check-in data, and smart card data (Batty,

2018; Cats, 2024; Neuhaus & Neuhaus, 2015). These data not only reveal intrinsic influences on

UV but also enable the identification of significant relationships between specific elements of the
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built environment and UV, which can be translated into measures, such as using the number and

diversity of small food and beverage establishments as indicators of vitality (Ye et al., 2018).

Moreover, data from bike-sharing (Zeng et al., 2020) , GPS (J. Wu et al., 2018) , commuting

surveys (Sung et al., 2015) , social media check-ins (Meng & Xing, 2019) , and street view

image (Kang et al., 2021) have also been extensively utilized in UV research. However, due to

spatial sampling biases, these datasets often require calibration with supplementary data, such as

road accessibility (Sulis et al., 2018).

Building on the aforementioned single-indicator evaluations and explorations into the

mechanisms of urban vitality, some scholars have begun to explore methods that integrate

multi-source data and multiple indicators to assess UV from diverse perspectives. For instance,

Ravenscroft (2000) developed a framework for monitoring and assessing the health of town

centers, aiming to evaluate the vitality and vibrancy of city cores (Ravenscroft, 2000). Braun et

al. (2015) developed a composite index of urban vitality based on factors such as compactness,

density, regional and local connectivity, destination accessibility, land use mix, and social

diversity, to assess the downtown vitality of 48 major U.S. cities (Braun & Malizia, 2015).

Similarly, He et al. (2018) utilized geographic big data, including POI density, urban function

mixed-use areas, check-in density, holidays, and population changes, to measure the vitality of

newly developed areas in Chinese cities from 2005 to 2015 (He et al., 2018).

Given that many current studies tend to oversimplify data processing, often using only the

quantity or intensity of crowd movement in sampled areas as the sole representation of UV

without fully considering the temporal characteristics of the data (L. Fan & Zhang, 2022; Z. Fan

et al., 2021), this study adopts the concept of multi-indicator vitality evaluation and innovatively

proposes using temporal volatility as a self-correcting coefficient in the assessment method.

Additionally, employing a single data source permits a deeper exploration of the driving

mechanisms of urban vitality influenced by other multi-source data (primarily various land use

functions), further enriching the understanding and analytical approaches of UV.

2.1.3 Vitality creation & drivers

Indeed, analyzing the factors that influence and drive UV is a crucial component in fostering UV.

As part of the urban system, the spatial heterogeneity of UV is influenced by the functions of

other city systems, including essential social services such as education, healthcare, and
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transportation, as well as neighborhood landscape features and recreational services like green

spaces and rivers.

Current research methods on urban vitality and its influencing factors and mechanisms can be

broadly divided into three main categories: observational summary, subjective preference, and

correlation analysis (GAO et al., 2023). Observational Summary Method: This approach relies

on empirical observation and documentation to analyze the patterns between the spatial

environment and spatial vitality. Early scholars, including Jane Jacobs, Jan Gehl, and Kevin

Lynch, used this method to identify conditions and indicators of vitality. Subjective Preference

Method: This method has been widely applied over an extended period and involves techniques

such as semantic differential (SD) analysis, fuzzy evaluation, and analytic hierarchy process

(AHP) to quantify the weights of various factors influencing specific groups. Correlation

Analysis Method: This approach employs mathematical and statistical techniques, such as

correlation and regression analysis, to investigate the relationship between spatial vitality and the

built environment. It has been extensively used in recent years. For instance, Long and Zhou

(2016) utilized big data to develop a framework for analyzing factors influencing vitality at the

urban street level and examined how these factors affect various types of functional streets using

regression analysis. Additionally, scholars have explored the mechanisms influencing regional

vitality by employing multi-source data and methodologies like correlation analysis and machine

learning. These analyses have elucidated the impact of various forms and elements, proposing

corresponding optimization strategies (H. Guo et al., 2020; Z. Wang et al., 2024).

However, research on the driving mechanisms behind UV has predominantly focused on the

driving coefficients of various factors or the spatial heterogeneity of vitality, with less emphasis

on human-land interactions, scale dependence, and scenario comparisons (S. Liu et al., 2020; Z.

Wang et al., 2024). Moreover, while current research has uncovered various mechanisms

influencing urban vitality, there is still considerable scope for expanding studies on land

functions. This paper aims to explore how land uses and spatial functions can synergistically

enhance urban vitality and investigate how these functions can be effectively integrated into

planning and design to achieve sustainable urban development goals.

Overall, research on UV has transitioned from qualitative theoretical exploration to quantitative,

method-based measurement. The continuous refinement of data sampling's spatiotemporal
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dimensions has driven a shift towards more diversified and human-centered research

perspectives.

2.2 Land use functions assessment

2.2.1 Land use functions

Land serves as the physical foundation for human activities, and its use fundamentally represents

the transformation of the Earth's surface through human intervention. According to urban

ecology theory, land use directly affects ecological systems, economic performance, and social

functions (Steffen et al., 2007). Activities such as production, infrastructure development, and

housing are intrinsically tied to specific modes of land use (Bertrand et al., 2008).

"Land Use Functions" or "Land Functions" refer to the private and public goods and services that

land provides through various utilization methods. This concept was introduced by the SENSOR

project under the European Union's Sixth Framework Programme, titled "Sustainability Impact

Assessment: Tools for Environmental, Social, and Effects of Multifunctional Land Use in

European Regions" (Pérez-Soba et al., 2008). Land Functions are determined by the structure of

various elements (subsystems) within the land use system (E. F. Moran et al., 2005). Humans use

land to create a rational utilization structure, aiming to derive economic, social, and ecological

benefits and values (J. Zhang et al., 2008), reflecting the capacity of land use systems to provide

human welfare (Gaodi et al., 2010; Wiggering et al., 2006).

The state and performance of land use functions in a given area, including economic, social, and

ecological functions, are often referred to as the "multi-functionality of land use." However, this

concept is often used interchangeably with Land Functions (Pérez-Soba et al., 2008). The

concept of land use multifunctionality originally arose from studies on agriculture, ecosystem

services, and landscape functions. In 1994, the Uruguay Round Agreement on Agriculture

(URAA) first introduced the concept of "Agricultural Multifunctionality" to WTO member states

(Article 20 of URAA)(Bohman et al., 1999). The OECD further clarified "multifunctionality" in

2001 as the natural and objective characteristics of certain economic activities, noting that

agriculture not only fulfills the function of food production but also contributes to environmental

protection, landscape preservation, rural employment, and food security (Barthélemy & Nieddu,

2007; Wiggering et al., 2006). Vereijken and others expanded the concept of "Multifunctional
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Agriculture" (MFA) to encompass "Multifunctional Land Use" (MLU), which has since evolved

into a broader concept of multifunctional land use (Gadjiev et al., 2007).

2.2.2 Land assessment framework

In the late 1990s, following adjustments in global agricultural policies (such as those by the Food

and Agriculture Organization, the Organization for Economic Co-operation and Development,

and the World Trade Organization) and European policies (like the European Union's Common

Agricultural Policy), scholars have increasingly recognized the universal guidance of

multifunctionality (Hediger, 2006). This recognition has elevated ‘multifunctionality’ to an

important scientific theme of sustainable development (Helming et al., 2008) and a key guiding

principle in EU urban policies. A specific assessment framework for land use functions should

include economic, environmental and social dimensions that are closely related to the regional

context. This definition has been widely accepted in the international academic community

(Pérez-Soba et al., 2008; Wiggering et al., 2006).

In China, land use functions are evaluated based on rational use, aiming to determine land value

according to specific objectives by assessing attributes, efficiency, and output quality of land use

(HUANG & YANG, 2008). A systematic understanding of the elements, implications, and

dimensions of land use is fundamental for assessment, typically manifested in different

frameworks such as single-objective and multi-objective evaluations (Cui et al., 2020).

Different stages of societal development require diverse land use strategies, resulting in the

creation of various assessment frameworks. For instance, when a city is abstracted into a linear

model, the direction of land function evaluation is determined by a single indicator, such as

economic output (C. G. Liu et al., 2005) or physical output (Pendall, 2003). As the focus of

assessments shifts from purely economic or fiscal outcomes to rational use and sustainable

development, greater attention is given to ecological resources and social services (Batty, 2002;

Lin et al., 2022).

The emergence of integrated frameworks reflects this shift in research paradigms. These include,

among others, the classic socio-economic-environmental (SEE) framework mentioned earlier,

which is widely used in sustainable development research (Jing & Wang, 2020; Weng et al.,

2022). Researchers have merged, subdivided, or expanded subsystem frameworks depending on



20

specific regional contexts and objectives (Lin et al., 2022; J. Liu et al., 2020; Zhongping et al.,

2011). In practice, considering the endogenous relationships between social and economic

systems, these three elements are often further integrated into the Social-Ecological framework

(also known as the Soc-Eco, SE framework) (Ji et al., 2024; Z. Zhang et al., 2023). This

framework posits that socio-ecology factors dominate urban development and are characterized

by complexity, non-linearity, and uncertainty (Levin et al., 2013; Z. Zhang et al., 2023) rather

than unidirectional relationships (Dong et al., 2021; L. Li et al., 2022; Lin et al., 2022; Weng et

al., 2022). This multidimensional analytical framework facilitates a better understanding of the

interrelations between land use sub-functions and the dynamic interactions between human

activities and land functions.

Overall, human understanding and utilization of land use functions have evolved from simple to

complex, and from singular to multifaceted. The "Multi-functionality of Land Use" is a

fundamental concept and methodological framework for evaluating the impact of land use

changes on its functions. It helps assess the comprehensive benefits brought by diversified land

use (Zhen et al., 2010) and gauges the human well-being derived from such diversification (W.

Zhao & Fang, 2014). Furthermore, in the context of rapid urbanization, research on the

multifunctionality of land use and multipurpose management strategies provides new

perspectives for the efficient use of land resources, fostering urban vitality, and optimizing urban

environments.

2.3 The vitality-land relationship

2.3.1 The impact of land on vitality

The source of urban vitality is intricately linked to both people and environment; therefore,

research on creating and enhancing urban spatial vitality primarily focuses on residents and land

use. The impact of urban land use on vitality has been expressed earlier in Howard's Garden City

concept (Howard et al., 2013), which aimed to enhance urban vitality by optimizing land use

distribution to improve living conditions. New Urbanism has introduced a new direction by

advocating for the integration of urban spatial form and the built environment (Y. Long & Huang,

2019) to enhance urban vitality and sustainability. This concept offers a foundational theoretical

basis for studying the roles of urban functions, attributes, and systems in promoting UV (Katz,
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1994).

Internationally, scholars have examined how the built environment of neighborhoods attracts

pedestrian activity by delineating pedestrian activity spaces (Jalaladdini & Oktay, 2012). These

studies have confirmed the applicability of Jacobs' theories across different geographical

contexts (Delclòs-Alió et al., 2019). A review of previous research, particularly studies on

multi-indicator frameworks for vitality assessment, reveals that urban vitality is strongly

associated with land use mix, accessibility to transportation and facilities, and urban functional

activities. Alexander (1975) argued that the vitality of an urban environment depends on its

continual repair and adaptation to maintain a healthy state.

The first Congress for the New Urbanism in 1993 established three levels of principles for New

Urbanism based on scale of practice: (1) the region, metropolis, city, and town; (2) the

neighborhood, district and corridor; and (3) the block, street, and building (Katz, 1994). The

Seaside community in Florida, one of the earliest examples of New Urbanism, represents a

classic model of traditional neighborhood development. Port's study on the Greater Boston area

demonstrated that the principles of New Urbanism are feasible for infill development and

effective in controlling urban sprawl (Port, 2004).

In recent years, as China's urbanization goals have shifted from quantity to quality, scholars have

increasingly focused on urban vitality assessment to facilitate city transformation and create

more vibrant urban spaces, conceptualizing the city as a "living organism." Modern urban

planning pursues "organized complexity," akin to life sciences, viewing the city as a dynamic,

organically connected whole composed of multiple systems (Portugali, 2016). For example, Ye et

al. (2018) summarized the principles of fostering urban vitality, emphasizing that appropriate

development intensity, a high degree of functional mix, and good street accessibility are critical

factors for enhancing urban vitality (Ye et al., 2018). Mao et al. (2020) utilized coupling degree

and geographically weighted regression (GWR) models to demonstrate that economic density,

educational and research resources, infrastructure development level, and digital informatization

are pivotal factors influencing urban vitality (MAO & ZHONG, 2020). Wang et al. (2023)

applied gradient boosting decision tree-Shapley additive explanations (GBDT-SHAP) models to

quantify the nonlinear impact of the built environment on urban vitality (Z. Wang et al., 2023).
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2.3.2 Land mixed-use development

The Athens Charter (1933) introduced four fundamental functions of modern cities: living,

working, recreation, and transportation, leading governments to segregate cities into distinct

functional zones. However, rigid functional zoning weakened the organic structure of cities,

leading to a decline in urban vitality. In response, theories of urban renewal and strategies to

enhance urban vitality emerged in the 1960s, emphasizing the intrinsic relationship between

urban vitality and land use patterns. Jane Jacobs (1961) introduced the concept of mixed primary

uses, contending that functional segregation failed to capture the complex dynamics of urban

operations. She suggested that organically mixing diverse functions could enhance the

attractiveness and vitality of an area, fostering successful communities.

In the 1960s, land use control methods such as Planned Unit Developments (PUDs) and Overlay

Zoning were promoted in the United States, emphasizing flexible development and mixed land

use. The Urban Land Institute (1976) in the United States proposed principles for mixed-use

development, including the spatial combination of various functions, the integration of physical

and functional elements, and comprehensive planning control. These principles aim to guide the

compatibility and integration of mixed land use. Subsequently, the Machu Picchu Charter (1977)

criticized the Athens Charter's concept of single-use zoning, advocating for cities as integrated

environments with multiple functions. Mixed-use theory has since become a cornerstone of

spatial development strategies, promoting urban vitality and sustainability (Witherspoon et al.,

1976).

Subsequently, urban mixed-development theories and models such as New Urbanism, Compact

City, Smart Growth, and Community Building were gradually introduced. These approaches

share common principles, including the development of public spaces, mixed-use development,

compact growth, and a human-centered focus (D. Wang et al., 2019). As urban renewal and

sustainable development movements gained momentum in the United States and Europe, mixed

land use emerged as a crucial tool to counteract the decline of urban vitality and promote

sustainable urban development, gradually becoming a fundamental paradigm in modern urban

planning (Port, 2004) . It matured as an urban land policy through both research and

practice(Arts et al., 2016; Grant, 2002; Rowley, 1998).
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2.3.3 Coupling of land functions

Research on mixed land use in China started relatively late. It was introduced in the 1990s along

with the rapid urbanization process following the reform and opening-up policy. Generally, it is

believed that mixed land functions are the source of urban diversity and vitality, effectively

responding to the diverse activities and needs of humans (Y. Huang, 2008) . These mixed-use

zones have evolved in practice, with rich connotations, and should align with the intrinsic value

of land use rather than merely serving as simple tools for land compatibility. However, current

research on "mixed land use" in China focuses more on functional zoning in urban areas,

primarily relying on data from Points of Interest (POI), nighttime lights, and reviews (Cen et al.,

2024; G. Zhao & Song, 2022) , with a focus on the mixing of residential, commercial, and

entertainment functions (S. Tang & Ta, 2022) , while discussions on broader functional mixing

remain relatively scarce.

In terms of analytical methods, common approaches include using the Entropy Index or

"land-use mixing" calculation models (C. Wu et al., 2023) , and measuring the degree of land-use

mixing at a certain scale or landscape through the Shannon diversity index (G. Zhao & Song,

2022). However, the goal of mixed land use should be to create positive externalities, rather than

simply resulting in "organic chaos" (Gu et al., 2019; D. Wang et al., 2019) . Therefore, the

research direction is gradually shifting toward exploring the interaction and coordination of

multiple systems, focusing on the development of the overall system (Liao & Liang, 2024; Wang

et al., 2023).

The concept of coupling originates from physics, referring to the effects and synergies generated

by the interaction between two or more systems. Geographers have borrowed and expanded this

concept, applying it to the study of complex interdependencies and interactions between human,

natural, and social systems(Morzillo et al., 2014; Qi et al., 2012) . This helps us gain a more

comprehensive understanding of the complex relationship between land use and urban vitality

during urbanization.

In practical applications, dual-system models (M. Huang et al., 2022) or multi-system models (H.

Liu et al., 2019) , can effectively analyze complex coupling mechanisms and reveal the impact of

urbanization and ecological interactions on the overall system. These models evaluate system
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patterns, flows, drivers, and response mechanisms, uncovering the relationship between the

self-organization of underlying elements and the emergent behavior of the system, and they have

profound effects on urban development in spatial and temporal dimensions.

In conclusion, the role of mixed functions in promoting vitality is widely recognized. However,

current research primarily focuses on the mixing of socio-economic functions or land use in

built-up areas, with limited attention to the coupling and coordination of urban systems and their

impact on urban vitality (D. Wang et al., 2019).
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3 MATERIALSAND METHODS
3.1 Study area

3.1.1 Location & economic development

Luohe City (113°27′–114°16′ E, 33°24′–33°59′ N) is located in the south-central part of Henan

Province, central China (Figure 8). The terrain is predominantly flat, and the Sha Li River bisects

the urban area into three distinct zones. The southern zone, known as the old town, is

characterized by historical and densely built-up areas. The northern zone, or the new town, has

undergone significant urban expansion in recent years and now serves as a hub for administrative

and commercial activities. The western peninsula area is focused on integrating green spaces and

promoting residential development.

Luohe spans an area of 2,697.15 km² and, as of 2023, has a permanent population of 2.37 million,

indicating moderate population density and growth. Economically, the city ranks at a medium

development level within Henan Province, placing 15th out of 18 cities in GDP in 2022.

However, it demonstrates notable economic dynamism, ranking 3rd in GDP growth rate among

Henan's cities in the same year. This rapid growth is driven by emerging industries, particularly

in food processing and logistics, bolstered by Luohe's strategic location along major

transportation corridors, which enhances its role as a regional trade and logistics center.

Additionally, the local government's efforts to improve infrastructure and attract investment have

expanded the city's socio-economic functions.
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Figure 8 Location Map: Study Area (GS (2020) 4619).

3.1.2 Representativeness and uniqueness

The economic and urbanization levels of Luohe City represent many of China's lesser-known

cities (Wang et al., 2023), showcasing a typical Chinese urban development model guided by

policies and resource investment. In planning theory, the point-axis system has profoundly

impacted urban planning in China (Manchun LI, 2019). This theory highlights the differential

impacts of infrastructure, such as traffic and landscape, on location and thereby introduces the

inescapable heterogeneity of location theory on urban development. Historically, Luohe's urban

development was driven by the livestock trade brought about by river transportation. The

historical street at the city core is Niuhang Street, a street where cattle were bought and sold. In

the context of Transit-Oriented Development (TOD) theory, the heterogeneous transportation

network introduces new driving factors for open spaces, vegetation, economies of scale, and

market competition, highlighting the critical role of roads and transportation in the city's

economy (Calthorpe, 1993).

Luohe City has distinct characteristics. Its flat terrain, lack of significant natural landscapes or

historical relics, and limited large green spaces around the urban area make Luohe an ideal

subject for analyzing the relationship between urban land development and human activities.

Overall, Luohe not only represents the general development patterns of ordinary Chinese cities

but also demonstrates unique characteristics under specific conditions, providing a distinctive
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perspective on changes in human-land relationships during urbanization.

3.1.2.1 Urbanization &land development

Urbanization is not a stable linear process; rather, it resembles a stepwise zigzag pattern (Figure

9 (b)). This is primarily because urban expansion often follows a cycle of agglomeration,

dispersion, and re-agglomeration. As the existing growth areas gradually face constraints from

boundary effects, the development and construction of new growth poles are often driven by

policy, resulting in a wave-like progression at the macro level (China, 2000-2010) (Wang et al.,

2023). This characteristic is observed not only in China but also in other Asian countries, such as

Japan, and in European countries, such as Hungary (Figure 9 (a)). The steady-state and mutation

phases of urban development can be distinguished by changes in the proportion of built-up land

or the rate of change in different types of land (Figure 9 (b)).

Figure 9 Schematic Diagram of Stages of Urban Development.

Based on MODIS land cover classification data, the study shows changes in the area of

Farmland, Green Infrastructure (GI), and Artificial Surfaces (AS) in Luohe City from 2001 to

2022 (expressed in terms of pixel count). Overall, over the past 20 years, the area of AS in Luohe

City has steadily expanded, while farmland has gradually decreased. Correspondingly, green

space initially decreased and then increased, indicating that urban development generally follows

a path of “Destruction followed by recovery”.

The standardization of pixel counts for the three types of land shows that the stages of land

development in Luohe City can be further differentiated into: (1) The first phase (2001-2013)

was an urban development phase. During this period, the area of AS increased relatively slowly

from 2001 to 2010, but began to accelerate from 2010 to 2013. Before 2013, farmland area

remained relatively stable while GI was limited, indicating that urban development occurred at
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the expense of green space. In 2013-2014, there was a mutation period in land development,

marking the transition to the second phase. (2) The second phase (2014-2018) was a GI

restoration phase, during which the growth of AS further accelerated. Influenced by the

“Returning farmland to forest” policy, GI area began to recover while farmland area started to

decline rapidly. Between 2014 and 2018, GI area surpassed the initial levels of 2001, indicating

that Luohe City began to simultaneously focus on the development of social and ecological

functions. (3) After 2018, the proportions of urban GI and farmland changed significantly again,

and Luohe City entered the third phase. The third phase (2018 to present) is characterized by

ecological construction, with a continued rapid increase in the area of AS. Meanwhile, the further

implementation of the “Returning farmland to forest” policy accelerated the growth of GI,

although farmland area continued to decline rapidly. Nevertheless, as of 2022, farmland still

occupies a significant proportion of the planned area (pixel count: 1516; proportion: 65.74%),

indicating that the city still has substantial land potential.

Figure 10MODIS-based Land Area Changes in Luohe, 2001-2022.

Therefore, studies on urban development and land function assessment should consider the

period from 2014 to the present as a steady-state phase, while future land simulations should

focus on the steady-state phase from 2018 to the present.

3.1.2.2 Risk of lack urban vitality

It is worth noting that changes in the human-land relationship in Luohe also reflect dynamic

processes of both synchronous and asynchronous development in the urbanization process,

corresponding to the current trend of a disconnect between population growth and urban

construction in China. This could well represent potential future issues in human-land relations.
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Therefore, the study of Luohe can provide an illustrative case for issues related to land

development and resident vitality in these cities.

The risk of Luohe's current lack of urban vitality comes from two main sources: 1 the first is the

year-on-year decline in the resident population. 2 The second is the asynchronous development

of population/construction land in terms of quantity. These can be glimpsed in the changes in the

relationship between population and land in the last 20 years.

The human-land relationship in Luohe City can be understood in two distinct phases. First, from

2000 to 2010, the rate of population growth surpassed urbanization, prompting development

strategies centered on expanding construction land to ensure sufficient living space for the

growing population. Second, after 2010, according to data from the Henan Province Yearbook,

the growth rates of both the population and urban built-up area appeared to align, suggesting a

period of synchronized, coupled development between human and land resources.

However, following the 2020 national census, which involved direct household visits and

reliable individual registration, the Henan Province Yearbook revised the population data for the

prior decade in 2021. This revision revealed that Luohe City had, in fact, experienced a steady

population decline from 2010 to 2020, contrasting with the rapid expansion of urban land. This

divergence reflects an asynchronous development trend, highlighting potential risks of urban

"sprawl" and diminished vitality. Luohe may thus exemplify the broader challenges of

population decline and urban contraction, signaling critical future scenarios for cities across

China.
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Figure 11 Changes in Population and AS Area in Luohe, 2000-2022.

3.1.2.3 Urbanization & built-up area expansion

From 2014 to 2023, the area of built-up areas in Luohe City increased from 143.84 km² (24.97%

of the study area) to 199.09 km² (34.56% of the planned area), an increase of 55.25 km²,

representing a growth rate of 38.41%. Morphologically, this expansion exhibited a pronounced

TOD pattern, with new built-up spaces expanding in a star-shaped pattern along national and

provincial roads. Specifically, small patches around major landscapes either disappeared or

merged into the main body, with the built-up area expanding preferentially in one or more

directions, a phenomenon described as the axial strip extension model (Cheng et al., 2021).

The center of gravity of the built-up area converged near the intersection of rivers and railways,

indicating that the city as a whole expanded along these axes, highlighting the locational

importance of transport and waterways. The center of gravity shift map revealed Luohe City's

development trend over the past decade: constrained by the city boundary to the south, the

built-up area expanded predominantly to the northeast. The direction and rate of center of gravity

shifts remained relatively stable, indicating that the city's development policies and driving

factors have been relatively consistent over the past ten years.

Figure 12 Built-up Area Boundaries and Center of Gravity Shifts.

3.2 Data acquisition and preprocessing

This section specifically includes: (1) introduction to the data sources; (2) preliminary processing

after data acquisition; and (3) the calculation of basic remote sensing indices.
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3.2.1 Data sources and collection

The data in this study is divided into three main parts: (1) human mobility data used for assessing

urban vitality; (2) satellite remote sensing data and related products used for land assessment; (3)

other data, including road network, Google Map, and urban yearbooks and so on.

3.2.1.1 Baidu heat map data

The human mobility data used in this study is derived from the human activity heat map feature

provided by Baidu Map. It quantifies mobile signals based on real-time geographic information

provided by smartphone users of Baidu products (such as Baidu Map, Baidu Search, and Baidu

Music), making it one of the most influential big data sources in China. While this dataset cannot

directly reflect the actual number of human activities, it has been proven to be a reliable indicator

of the real-time distribution of human activity intensity, serving as a proxy for depicting the

spatial distribution of the population in real time(Z. Fan et al., 2021).

The human mobility data collection spans 4 weeks (i.e., 4 activity cycles) distributed across four

seasons: Spring (April 11-16, 2023); Summer (July 11-16, 2023); Autumn (October 11-16, 2023);

Winter (January 15-21, 2024). During the sampling period, no extreme weather events occurred.

The data features high temporal resolution (hourly) and spatial resolution (200 m*200 m).

3.2.1.2 Remote sensing satellite datasets

This study primarily utilizes atmospherically corrected Landsat-8/9 surface reflectance (L8/9 SR)

data, collected every 16 days. The Landsat-8/9 satellites carry the Operational Land Imager (OLI)

and Thermal Infrared Sensor (TIRS), providing global coverage with 11 spectral bands: 30 m

resolution for the main spectral bands, 15 m for the Panchromatic band, and 100 m for the

Thermal bands.

For nighttime light (NTL) data, the study uses the Suomi NPP Visible Infrared Imaging

Radiometer Suite (VIIRS) from the Earth Observation Group. VIIRS Day/Night Band (DNB)

data offers higher spatial resolution (463.83 m) and a higher light saturation threshold than

DMSP/OLS and has been available since 2012. The NTL data for this study is sourced from

monthly composite data from the NPP-VIIRS satellite.

3.2.1.3 Finished product datasets
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MODIS (Moderate Resolution Imaging Spectroradiometer) is a primary sensor aboard NASA's

EOS satellites Terra (launched in 1999) and Aqua (launched in 2002). MODIS provides high

spectral resolution and a wide spectral range, offering multiple data products. These include raw

(L0), corrected (L1), and application-specific (L2-L4) datasets, covering land, atmosphere, and

ocean, with a total of 44 standard data types. This study primarily uses MODIS land data

products. Gross Primary Productivity (GPP) data is from the MOD17 dataset with a 500m

resolution, and land cover data comes from the MOD12 dataset, also with a 500m resolution.

The MODIS land classification has been consolidated as follows.

Table. 1MODIS Land Consolidation.
MODIS ID Description Merge

9 Savannas: tree cover 10-30% (canopy >2m)
Green

Infrastructure

10 Grasslands (a very small amount): dominated by herbaceous annuals (<2m).
Green

Infrastructure
12 Croplands: at least 60% of area is cultivated cropland. Farmland

13
Urban and Built-up Lands: at least 30% impervious surface area including
building materials, asphalt and vehicles.

Artificial
Surface

14
Cropland/Natural Vegetation Mosaics (a very small amount): mosaics of
small-scale cultivation 40-60% with natural tree, shrub, or herbaceous
vegetation.

Farmland

Given that human settlement density is a key indicator for land assessment and urban vitality,

this study incorporates the WorldPop population density dataset. This dataset offers global spatial

population distribution data with a 100m spatial resolution and annual temporal resolution from

2000 to 2020. However, two challenges arise: (1) Post-2020 population data requires fitting and

extrapolation, and (2) for specific study areas, outlier removal and linear correction of regional

population data are needed, with no-data areas addressed using an IQR moving window method.

Detailed procedures will be explained in the methods section.

3.2.1.4 Terrain & other data

A Digital Elevation Model (DEM) is a digital representation of the Earth's surface, typically

obtained via satellite for large-scale coverage due to cost considerations. This study uses the

Copernicus DEM 30m (COP-DEM) dataset, a product of the Copernicus program—a

collaboration between the European Space Agency (ESA) and the European Union. The

Copernicus DEM provides a global elevation model with 30m resolution, derived from
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TANDEM-X and SRTM data, sampled between 2010 and 2015, and released in 2019.

The above remote sensing datasets were processed using the Google Earth Engine platform

(GEE, https://code.earthengine.google.com/, accessed in April 2024). Road network data were

obtained from OSM (https://www.openstreetmap.org/, accessed in April 2024) and subsequently

manually corrected using Google Maps. Text and yearbook data were sourced from the Henan

Provincial Bureau of Statistics (https://tjj.henan.gov.cn/tjfw/tjsj/). Details of the specific dataset

are given below:

Table. 2 Data Set Acquisition Paths and Descriptions.

Name Source Time Resolution
Temporal
Resolution

Landsat-8 LANDSAT/LC08/C02/T1_L2 2014 – 2022 30m 16 Days
Landsat-9 LANDSAT/LC09/C02/T1_L2 2023 – 2024 30m 16 Days

GPP
MODIS/006/MOD17A2H 2014 – 2022 500 m Multi-Day
MODIS/061/MOD17A2H 2023 –2024 500 m 8 Days

LULC – MODIS MODIS/061/MCD12Q1 2001 – 2022 500 m Yearly

NTL
NOAA/VIIRS/DNB/MONTHLY_V1/V

CMCFG
2014 –2024 463.83 m Monthly

POP WorldPop/GP/100m/pop 2000 – 2020 100 m Yearly
COP – DEM COPERNICUS/DEM/GLO30 2010.12 – 2015.01 30 m -

Roads OSM, https://www.openstreetmap.org/ 2018 –2024 - -

Yearbooks
Henan Provincial Bureau of Statistics
（https://tjj.henan.gov.cn/tjfw/tjsj/）

- - -

3.2.2 Data processing

3.2.2.1 De-cloud and data synthesis

Cloud Removal and Data Synthesis: The 2023 L8/9 SR dataset was utilized, and pixels

corresponding to Dilated Cloud (Bit 1), Cloud (Bit 3), and Cloud Shadow (Bit 4) were excluded

based on the QA_PIXEL band. To address null values and ensure data stability, the annual

median was calculated for each pixel. This process combined multiple scene images into a single

annual composite dataset.

Data Synthesis and Correction: The raw NTL data were provided as monthly composites, and

GPP/NDVI data were provided as 8-day/16-day composites. Both datasets were processed into

annual data by calculating the mean value for each pixel. Given the common “blooming” effect

in these data, a mask was generated based on the 30 m land classification data (described in

detail later) to exclude NTL/GPP values over the water surface. Finally, the Baidu human

https://code.earthengine.google.com/
https://www.openstreetmap.org/
https://tjj.henan.gov.cn/tjfw/tjsj/
https://www.openstreetmap.org/
https://tjj.henan.gov.cn/tjfw/tjsj/
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mobility data were used as the baseline resolution (200m*200m) of all the data for resampling,

and the resolution was unified.

3.2.2.2 Basic remote sensing indicators

Various remote sensing indices have been developed using the Landsat satellite bands to monitor

and analyze land cover and environmental changes. These indices help identify and quantify

features like vegetation growth, building density, water bodies/moisture distribution, and land

surface temperature. Since these indices will be frequently referenced and integrated in

subsequent sections, they are pre-calculated here. The abbreviations for the bands used in the

formulas correspond to Landsat 8/9: Blue (B2), Green (B3), Red (B4), NIR (B5), SWIR1 (B6),

SWIR2 (B7), and TIR1/2 (B10/B11).

(1) Vegetation Indicators

NDVI (Normalized Difference Vegetation Index). NDVI is one of the most commonly used

indices to reflect changes in vegetation greenness by utilizing the differing absorption rates of

NIR and Red spectral bands in green vegetation. It is closely related to plant biomass, leaf area

index, and vegetation coverage, making it a comprehensive indicator of vegetation density and

health. EVI (Enhanced Vegetation Index). EVI addresses NDVI's saturation issues in areas

with high vegetation and improves atmospheric and background noise correction. It performs

better in densely vegetated and atmospherically influenced regions.

FVC (Fractional Vegetation Cover). FVC represents the vertically projected area of green

vegetation canopy per unit area. Traditionally measured with fisheye lenses, remotely estimated

FVC relies on techniques such as mixed pixel decomposition. This study uses a pixel binary

model (Peng et al., 2016), assuming that pixel information is composed of vegetation and bare

soil. After recalculating NDVI data, the formula for FVC is:

FVC =
(NDVI − NDVIsoil)

(NDVIvg − NDVIsoil)
(1)

where NDVIsoil and NDVIvg are the NDVI values for bare soil and fully vegetated areas,

typically at the 5% and 95% cumulative percentiles.

LAI (Leaf Area Index). LAI (Baret & Guyot, 1991) measures the total area of plant leaves per
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unit ground area, indicating the three-dimensional vegetation volume. It is essential for processes

such as evapotranspiration and photosynthesis. The empirical formula for LAI (Boegh et al.,

2002), is:

LAI = 3.618 ∗ EVI − 0.118 (2)

LAI values typically range from 0 to 3.5, with higher values indicating more substantial

vegetation volume.

SAVI (Soil-Adjusted Vegetation Index). SAVI improves NDVI by minimizing soil brightness

influences through a soil correction factor, making it more effective in areas with low vegetation

cover, such as urban or arid regions. The formula for SAVI is:

SAVI = ((NIR − Red)/(NIR + Red + L)) ∗ (1 + L) (3)

Where L is the soil correction factor, generally set to 0.5. SAVI values range from -1.0 to 1.0.

(2) Building Indicators

NDBI (Normalized Difference Built-up Index). This index is used to identify and quantify the

density and coverage of urban buildings. IBI (Index of Building Intensity). This index

incorporates water and vegetation background information into the NDBI, effectively

suppressing background signals from water bodies and vegetation. It is used to assess urban

density by considering factors such as building height, density, and coverage (Xu, 2008). The

formula for IBI is:

IBI =
(NDBI − (SAVI + MNDWI)/2)
(NDBI + (SAVI + MNDWI)/2) (4)

MNDWI will be introduced later.

(3) Water and Moisture Indicators

MNDWI (Modified Normalized Difference Water Index). This index improves upon the

NDWI by adjusting the wavelength combinations used, thereby enhancing water body detection

and distinguishing them from other surface types. The MNDWI better reveals subtle water

features, such as suspended sediments and water quality changes. Additionally, MNDWI

effectively distinguishes shadows from water bodies, addressing challenges in water extraction
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due to the presence of shadows (Han-Qiu, 2005) . NDBSI (Normalized Difference Built-up

and Soil Index). This index indicates surface "dryness," derived by averaging the IBI and the

Soil Index (SI), which reflects exposed or sparsely vegetated land in the study area. The formula

is:

NDBSI =
IBI − SI

2
(5)

SI = ((SWIR1 + RED) − (NIR + BLUE))/((SWIR1 + RED) + (NIR + BLUE)) (6)

WET:WET reflects the moisture content of water bodies, soil, and vegetation, which is closely

related to the ecological environment. High WET values positively impact vegetation growth,

disaster prevention, and regional ecological protection. The formula for WET is:

WET = L1 ∗ Blue + L2 ∗ Green + L3 ∗ Red + L4 ∗ NIR + L5 ∗ SWIR1 + L6 ∗ SWIR2 (7)

Where L1-L6 are correction coefficients corresponding to each band, for the OLI sensor: L1=

0.1511，L2= 0.1973，L3= 0.3283，L4= 0.3407，L5= -0.7117，L6= -0.4559.

(4) Thermal Indicators

LST (Land Surface Temperature). This metric measures the actual temperature of the land

surface, derived from TIR band data. LST is increasingly important in various studies assessing

surface conditions, such as urban climate, evapotranspiration, and vegetation stress. This study

uses the Statistical Mono-Window (SMW) algorithm to derive LST from the TIR bands of

Landsat 8/9 SR (Ermida et al., 2020).

3.3 Data testing and dimensionality reduction methods

3.3.1 Principal component analysis

Principal Component Analysis (PCA) is a commonly used dimensionality reduction technique

that projects high-dimensional data into a lower-dimensional space while preserving as much

variance information as possible. After normalizing the original data, the covariance matrix,

eigenvalues, and eigenvectors are calculated. The top k eigenvectors with the largest eigenvalues

are selected as principal components, as they explain the most variance in the data. The original

data is projected onto these principal components, resulting in reduced-dimensionality data.

Through linear transformation, the original variables are converted into a few uncorrelated new
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variables (principal components), each of which is a linear combination of the original variables

(Smith, 2002).

Two key metrics are considered: the proportion of total information and the eigenvalue. The

proportion of total information refers to the ratio of the variance explained by the top k principal

components to the total variance, reflecting the amount of original data information retained.

Eigenvalues represent the amount of variance explained by the corresponding eigenvectors

(principal components); the larger the eigenvalue, the more significant the principal component.

Selecting the top k eigenvectors with the largest eigenvalues helps retain the primary information

in the data.

In this paper, PCA is a mandatory step to calculate the RSEI (to be presented later). It is also

used to screen representative landscape pattern indices.

3.3.2 Normalization method

In this paper, different normalization methods are applied to different types of indicators. The

normalization of positive indicators is denoted as "nor+," while the normalization of negative

indicators is denoted as "nor-." The specific formulas are as follows:

nor+ =
X − Xmin

Xmax − Xmin
(8)

nor− =
Xmax − X

Xmax − Xmin
(9)

where X is the original data point, Xmin is the minimum value, and Xmax is the maximum value in

the dataset. The normalization method adjusts the magnitude of different indicators so that they

can be compared on the same scale, eliminating the effects of different magnitudes in the raw

data. In this way, the normalized data can more accurately reflect the relative importance of each

indicator in the comprehensive evaluation.

3.3.3 Inter-quartile range test

Compared to the Z-test and robust Z-test, the IQR (Inter-quartile Range) test does not assume the

normality of the original data, making it more broadly applicable. The IQR is insensitive to

outliers, as it relies only on the middle 50% of the data, making it a reliable statistic for

describing data dispersion and identifying outliers, especially in the presence of extreme values.
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In identifying outliers in raster data, spatial heterogeneity should be considered; thus, a moving

window IQR test is employed. An N*N pixel window is defined, and the 25th and 75th

percentiles of each pixel's local area are calculated, representing the lower quartile (Q1) and

upper quartile (Q3), respectively. The IQR, defined as the difference between Q3 and Q1, is used

to delineate the normal value range, set from Q1 - 1.5 * IQR to Q3 + 1.5 * IQR. Values outside

this range are considered outliers.

IQR = Q3 − Q1 (10)

In this paper, IQR is combined with the moving window method for removing outliers in raster

datasets (e.g., population data) to ensure data robustness.

3.4 Land functional assessment framework

Land use often manifests in both explicit and implicit forms (Long, 2012; Song & LI, 2019).

During periods of low human activity, area serves as the primary driving factor and represents

the explicit outcome of human activities. However, as human activity increases, the forms and

functions of land use, the social/ecological benefits generated per unit of land, as well as the

patch morphology, distribution, and connectivity at the class scale undergo significant changes.

These are implicit expressions of the outcomes of human activity.

Based on this understanding, we constructed a comprehensive framework to evaluate the spatial

heterogeneity of land functions, considering both the social and ecological functions of land.

This framework integrates quantity, quality, and structure: (1) The multi-source data principle.

This approach not only effectively avoids data collinearity issues but also comprehensively

assesses the diversity and complexity of land functions from multiple dimensions, which is

particularly crucial in complex urban environments. (2) The comprehensive indicators

principle.While ensuring the distinctiveness of the indicators, we use comprehensive indicators

derived from the combination of multiple indices to enhance the simplicity and interpretability of

the assessment system. The use of comprehensive indicators also reduces redundant information

while improving the overall efficiency of the assessment.

Table. 3 Land Function Assessment Framework and Indicators.

Goal Layer Framework Rule Layer Index Layer

Land Social Quantity Spatial Service Artificial Surface Rate (ASR)
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Function (LSF)

Quality

Urbanization Level LST and EVI regulated NTL city index (LERNCI)

Transportation
Accessibility

Weighted Integration (WI)

Settlement Situation Worldpop Population Density (POP)

Structure

Artificial Surface Patch
Morphology

Artificial Surface -Landscape Shape Index (ALSI)

Artificial Surface Patch
Aggregation

Artificial Surface -COHESION (ACO)

Land
Ecological

Function (LEF)

Quantity
Basic Green Space

Service
Green Infrastructure Rate (GIR)

Quality
Vegetation Cover Vegetation Quality (VQ)

Ecological Benefits Remote Sensing Ecological Index (RSEI)

Structure

Green Infrastructure
Patch Morphology

Green Infrastructure -Landscape Shape Index (GLSI)

Green Infrastructure
Patch Aggregation

Green Infrastructure -COHESION (GCO)

3.4.1 Random Forest-based land classification

Random Forest has been widely applied in land classification studies across global cities

(Nguyen et al., 2020; Zhou et al., 2020). In this paper, we use spectral, indicator, nightlight,

terrain, and textural features—a total of five types of features—to aid in classification. Based on

annual composite data from Landsat 8/9 SR, this approach aims to address the common

challenges of interpreting multispectral images and data redundancy by highlighting key

information about land use types, enhancing image interpretability, and improving monitoring

accuracy. PCA was employed to compress the B2-B7 spectral bands into three principal

components, which were used as spectral features (X. Wang, Yao, et al., 2023).

NDVI, NDBI, MNDWI, and SI were employed as index features, each emphasizing specific land

use characteristics such as green infrastructure, artificial surfaces, water bodies, and farmland

(bare soil). Since urban development and expansion tend to occur in flatter areas, terrain features

such as DEM and slope were also included.

Due to the potential confusion between green infrastructure and farmland, texture features were

added to aid analysis. These texture features were derived from the panchromatic band (B8,

resolution: 15m) using the Gray-Level Co-occurrence Matrix (GLCM), extracting the GLCM

mean and variance. In Luohe City, the regular textures of farmland ridges contrast with the more
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natural textures of planned green infrastructure, aiding in their differentiation.

Additionally, nightlight features were incorporated. NTL intensity helps locate artificial surfaces

and differentiate green infrastructure from farmland, as green infrastructure are more likely to be

situated around human settlements. Using the Random Forest classifier, we derived LULC data

for 2018-2024, categorized into: 1) Artificial Surface (AS), 2) Green Infrastructure (GI), 3) Water,

and 4) Farmland.

Table. 4 LULC Classification Accuracy.
Year Overall Accuracy Kappa Accuracy

2018 87.04% 81.41%

2019 84.56% 79.57%

2020 86.43% 81.61%

2021 87.03% 81.55%

2022 87.94% 83.69%

2023 89.95% 86.43%

2024 88.44% 84.40%

LULC is classified data. To facilitate the calculation of factor weighting and raster overlays, a

200m grid was constructed to compute the land use proportion within each grid, referred to as

the land use rate. This study focuses on the Artificial Surface Rate (ASR), which indicates the

physical basis of the land's social functions; and the Green Infrastructure Rate (GIR), which

indicates the physical basis of the land's ecological functions.

3.4.2 Vegetation quality assessment

To evaluate the heterogeneity of vegetation quality (VQ), we adopted three indicators: LAI, FVC,

and GPP, based on the National Ecological Environment Standard (HJ 1172-2021, China). These

indicators are combined with equal weights to represent the quality of natural vegetation within

an ecosystem, reflecting the condition of vegetation and the overall ecosystem.

VQ =
nor+(FVC) + nor+(LAI) + nor+(GPP)

3
(11)

3.4.3 Ecological benefit assessment

The Remote Sensing-based Ecological Index (RSEI) is widely used due to its visibility,

objectivity, and comparability (XU, 2013). RSEI combines greenness (NDVI), wetness (WET),
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dryness (NDBSI), and heat (LST) indicators for the period of May to October. After normalizing

these indicators and processing them through PCA, the first principal component (PC1) is

extracted. This PC1 is further normalized to obtain the objective ecological index.

RSEI = 1 –���+ (PC1 (NDVI, WET, NDBSI, LST)) (12)

The difference between "PC1" and "1-PC1" is merely a change in the direction of the eigenvector,

not its value, which affects the RSEI results.

This study utilizes the RSEI and VQ to jointly assess the "quality" dimension of LEF,

incorporating improvements to the RSEI to address its limitations in multi-layer vegetation

observation (Y. Liu et al., 2023). While greenness indices like the EVI (X. Wang et al., 2008) ,

NPP (D. Fan et al., 2021) are commonly used to improve RSEI, they overlook the complex

vertical structure of green infrastructure. Variations in understory vegetation, canopy density, and

leaf density can significantly impact ecological assessments (C. Liu et al., 2008). The VQ index,

which measures vegetation in three dimensions—horizontal area, vertical density, and

productivity—provides a more detailed evaluation.

3.4.4 NTL downscale

NTL has been widely used to monitor urbanization and expansion. However, its low resolution

limits its effectiveness in local urban areas, often requiring cross-satellite corrections to enhance

spatial detail (Liao & Liang, 2024). Typically, scholars first try to solve the pixel saturation

problem in DMSP data. These models provide the possibility of downscaling the NTL data for

NPP-VIIRS.

Some researchers have incorporated vegetation data for NTL correction. For example, Zheng &

Chen (Z. Zheng & Chen, 2019) integrated nighttime light data with NDVI to propose the Human

Settlements Index (HSI). Zhuo et al. (Zhuo et al., 2015) used EVI to develop a desaturation

method for modifying saturated NTL pixels, though it overlooked human factors in urban

structure. Zheng et al. (Y. Zheng et al., 2021) proposed the Enhanced Nighttime Light Urban

Index (ENUI) by incorporating NDWI and NDBI, reducing background light but distorting NTL

intensity. Liu et al. (Y. Liu et al., 2017) introduced the LST and EVI Regulated NTL City Index

(LERNCI), which integrates LST and EVI to better reflect economic and human activities:



42

LERNCI = nor+((
LST

LSTAVGs
+

EVIAVGs
EVI

) × NTL) (13)

Here, LSTAVGs and EVIAVGs represent average values of LST and EVI in the urban core.

Weighted light reflects urbanization and development intensity, which is strongly correlated with

economic growth and energy consumption.

3.4.5 Population fitting and outlier removal

Given the relative stability of population growth in the time series and considering data

consistency, we created a spatiotemporal cube using historical data from 2000 to 2020,

constructing an OLS (Ordinary Least Squares) model for pixel-wise prediction of the post-2020

population distribution. We also obtained district-level population data from the city almanac for

each year, calculated scaling factors, and linearly corrected the raster data:

Total POP =
i=1

n
POPI� (14)

POP Corrected = aX+b (15)

Here, POPi is the population count for the ith pixel, and Total POP is the total population within

the district administrative boundaries constituting the study area. In this formula, POP Corrected is

the corrected population data, and a is the weighted coefficient for the year, derived from the

district-level permanent population from the almanac divided by Total POP. In linear population

correction, if X is 0, the pixel is considered uninhabited, and b is set to 0.

The calculated pixel values may show anomalies, such as values below zero or extremely high

values. Then, the Moving Window IQR was employed to remove outliers. The moving window

threshold was set to a 10*10 pixels (1000*1000 m) square.

3.4.6 Space syntax - Integration

Space Syntax, a theory and method developed by Bill Hillier and Julienne Hanson in 1984,

analyzes spatial structures to interpret human social systems. It views cities as spatial entities

defined by topological structures. By abstracting roads as independent elements, this approach

removes social attributes to focus purely on spatial relationships, facilitating the study of human

activities, economic development, spatial structure, and land use (Hiller, 2007). This theory shifts

the understanding of road network accessibility from "perceptual feeling" to "rational analysis".
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In this study, roads are used to segment urban spaces, as road networks typically correlate with

the quality of commercial, medical, cultural, and educational services. However, road grades and

importance vary, so we employ a segment map and the "Integration" variable to measure road

space accessibility. The weighted integration index (WI) is calculated through road length

weighting using Depthmap10 software, and vector road network files are converted to raster via

ArcGIS Pro 2.8. Integration is defined by the number of paths (N) and the topological depth (TD)

of paths, expressed by the formula:

WI =
N log2 

N + 2
3

− 1 + 1

(N − 1)|TD − 1|
∗ Weighted (16)

Areas with high WI usually correspond to main urban roads with high traffic flow. Unlike road

network density, the integration model includes TD, which reflects the number of turns needed to

reach a destination. A higher TD indicates more turns, increasing travel difficulty. The inclusion

of TD enhances the analysis of road "turning" costs, aligning with the continuous movement of

pedestrians and vehicles. Road length weighting further emphasizes networks with fewer turns

(SHENG et al., 2015).

3.4.7 Landscape pattern index

Previous studies show that landscape scale, shape, quantity, type, and spatial configuration

significantly influence ecological security (Ma et al., 2019) and correlate with human activities

(L. Fan & Zhang, 2022; M. Huang et al., 2022). Landscape patterns describe the texture of land

patches: finer textures represent smaller divisions of functions, while coarser textures indicate

larger divisions. Sharp textures reflect rigid functional boundaries, whereas blurred textures

indicate more natural transitions between functions. Coarse textures characterize the spatial

interweaving of functions, which facilitates the mixed use of land and its associated benefits. (D.

Wang et al., 2019).

Based on previous studies (J. Wu, 2000), we initially selected indices such as Aggregation Index

(AI), Patch Density (PD), Largest Patch Index (LPI), Landscape Shape Index (LSI), Edge

Density (ED), Effective Mesh Size (MESH), and Patch Cohesion Index (COHESION) to capture

key landscape pattern characteristics. These indices were calculated using FRAGSTATS 4.2

(McGarigal et al., 2002, 2012) with a moving window method. Principal component analysis
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(PCA) was employed, and only indices with contributions greater than 0.90 to the first principal

component (PC1) were selected (Table 2, Bartlett's test passed).

Table. 5 Primary Landscape Pattern Index.

Type Name Description

Aggregation and
Patch

Distribution

AI
Examines the connectivity between patches of each landscape type. Values
range from 0 to 100, with lower values indicating more dispersed landscapes.

PD
Represents the density of a specific patch type within a landscape, reflecting
the degree of fragmentation of a particular land type.

Patch
Characterization

LPI
Values range from 0 to 100, used to identify dominant patch types in a
landscape.

LSI
Measures the complexity of patch shapes within a landscape; higher values
indicate more complex shapes.

ED
The total length of all patch edges per unit area, reflecting the density and
fragmentation of patch boundaries.

Spatial
Connectivity

MESH

The ratio of the sum of the squared patch areas to the total landscape area,
used to compare the average patch size within a landscape. When the total
landscape area is constant, an increase in effective mesh size indicates an
increase in the area of that type, reflecting its greater proportion in the
landscape.

COHESION
Reflects the aggregation and dispersion state of patches within the landscape,
with values ranging from 0 to 100; higher values indicate greater aggregation.

From this process, the LSI for artificial surfaces and green infrastructure, and COHESION,

which describes patch aggregation, were identified as key indicators.

Table. 6 Factor Loading Factors.

PC1 ED LPI LSI MESH PD AI COHESION

Factor Loadings
AS 0.852 0.731 0.902 0.584 0.666 0.915 0.964

GI 0.916 0.719 0.912 0.52 0.723 0.861 0.949

3.4.8 Weighted model & comprehensive overlay

3.4.8.1 CRITIC objective weighted

The issue of multicollinearity among indicators needs careful consideration. Therefore, the

Criteria Importance Through Intercriteria Correlation (CRITIC) model is used to weight the

aforementioned indicators (Diakoulaki et al., 1995). By weighting and combining these

indicators, we obtain the final weighted coefficient. This method imposes a penalty on highly
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correlated data. The specific formula is as follows:

�� =
��

�=1

�
 � ��

(17)

The CRITIC method is based on multi-criteria decision-making (MCDM). It could ensure the

weights by combining the indicator variability Sj (i.e., the degree of dispersion of this indicator),

the indicator conflict Rj (i.e., the irrelevance between different indicators), and the

information-carrying capacity Cj (obtained by multiplying Sj and Rj). These indicator features

were calculated within one data group (p group) of the j indicator. It is highly advanced in

dealing with covariance and collinearity between the different indicators of urban studies.

3.4.8.2 AHP subjective weighted

Given that residents are the ultimate beneficiaries of urban land development, subjective weights

are incorporated into the analysis. Subjective weights are determined using the Analytic

Hierarchy Process (AHP), a structured decision-making tool that requires minimal mathematical

input, offering a straightforward approach to addressing multi-objective, multi-criteria, or

complex unstructured decision problems (Saaty, 1987) . Using SPSSPro to construct pairwise

comparison matrices, the weights for each indicator are calculated. The consistency of the AHP

model is assessed using the Consistency Ratio (CR), denoted by the λ index. The λ index gauges

the rationality of the AHP model; a value less than 0.1 signifies an acceptable consistency level,

confirming the model's reliability.

3.4.8.3 Land social/ecological function

The calculation formula for the final valuation result of the land function is as follows:

LSF = W1 ∗ ASR + W2 ∗ POP + W3 ∗ LERNCI + W4 ∗ WI + W5 ∗ ALSI + W6 ∗ ACO (18)

LEF = W7 ∗ GIR + W8 ∗ VQ + W9 ∗ RSEI + W10 ∗ GLSI + W11 ∗ GCO (19)

W is the mean of the subjective and objective weights of the corresponding indicator.

3.5 Land coupling & functional area identification

With urbanization advancing, land development evaluation has shifted from focusing solely on

development levels to assessing coupling coordination degree (CCD) for functions mixed (L. Li
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et al., 2022). Land function coupling relationships include intra-group and inter-group couplings,

with this study focusing on inter-group couplings between LSF & LEF, calculated using the

traditional CCD model.

Landscape analysis follows two paradigms: (1) the "Patch-Corridor-Matrix" paradigm, which

emphasizes spatial relationships but struggles to connect patterns with ecological processes (L.

Chen, Liu, et al., 2008; Hess & Fischer, 2001); and (2) the "Source-Sink-Flow" paradigm, which

incorporates spatial flows to better understand these processes (L. Chen, Fu, et al., 2008; FENG

et al., 2024). In this study, the traditional CCD model was combined with tools such as gravity

model, Gaussian Two-Step Floating Catchment Area (2SFCA) (Yang et al., 2022) and complex

network algorithms such as the Minimum Spanning Tree (MST), which enhances the

long-distance relationship and is applied in the analysis of intra-group coupling.

3.5.1 Inter-group coupling of land function

3.5.1.1 Coupling coordination degree model

The coupling coordination model assesses coordinated development among subsystems, with the

coupling degree (C) representing the interaction between systems and the coordination degree (T)

measuring the quality of this interaction (L. Li et al., 2022). The formula is:

C = 2 ∗
u1 ⋅ u2

u1 + u2
2

1/2

(20)

where U1 and U2 are the normalized LSF and LEF values. To exclude low-quality coupling (i.e.,

low-low system balance), the coordination index T is introduced and combined with the C index

to derive the CCD value:

T = W1 ∗ U1 + W2 ∗ U2 (21)

CCD = C ∗ T = 2
u1 ⋅ u2

u1 + u2
2

1/2

∗ (W1 ∗ U1 + W2 ∗ U2) (22)

To clarify, the CCD calculated using the traditional coupling coordination model is labeled as

CCD, where W represents the corresponding system's weight. In this study, the weights for the

land social function (LSF) and land ecological function (LEF) systems are assumed to be equal.

CCD values range from 0 to 1, representing the degree of coordinated development. Higher CCD
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values indicate better coordination between the systems, with the scale ranging from extremely

unbalanced (CCD = [0.0, 0.1]) to highly coordinated (CCD = [0.9, 1.0]) (Table.7).

Table. 7 CCD and Its Corresponding Level

Imbalance

Level 1 2 3 4 5

CCD (0,0.1] (0.1,0.2] (0.2,0.3] (0.3,0.4] (0.4,0.5]

Type
Extreme

imbalance

Severe

imbalance

Moderate

imbalance

Mild

imbalance
Little imbalance

Coordination

Level 6 7 8 9 10

CCD (0.5,0.6] (0.6,0.7] (0.7,0.8] (0.8,0.9] (0.9,1]

Type
Bare

coordination

Primary

coordination

Intermediate

coordination

Good

coordination

Excellent

coordination

Grids with CCD values below 0.5 are classified as decoupling areas, while those above 0.5 are

functional coupling areas.

3.5.1.2 Regional functional identification

Furthermore, areas are categorized based on the Ci index (Raux et al., 2016), which measures

the ratio of LSF to LEF. If the Ci value of a specific land function in the grid exceeds 50%, the

grid is marked as a single-function area of that type (S. Tang & Ta, 2022). If the function ratio is

maintained around 1:1, the unit is considered a mixed-function area. Specifically:

Ci = LSF pixel�/(LEF pixel� + LSF pixel�) (23)

Land Function =

if C − CCD＜0.5, Decoupling Area

if C − CCD ≥ 0.5,
and Ci＜ 0.45, Ecological Area
and 0.45≤ Ci＜ 0.55, Mixed Area

and Ci＞ 0.55, Social Area

(24)

Areas are classified as ecological, social, or mixed-function zones based on Ci values.

3.5.2 Intra-group coupling of land function

3.5.2.1 Distance-considered CCD model

Significant inequalities exist in the spatial distribution of resident activities, as evidenced by

spatial equity research. A study conducted in Singapore reveals that approximately 80.60% of

residents have access to only 14.35% of regional park recreational opportunities, and 80.62%

have access to only 26.46% of the environmental quality in these parks (R. Guo et al., 2024).
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This inequality often manifests in a "Pareto distribution" of services, where a small fraction of

land provides services to the majority of nearby residents. Therefore, land social function (LSF)

and ecological function (LEF) can be simplified into a functional network consisting of localized

peak points.

To calculate self-coupling relationships, the following steps are proposed: (1) Peak point

selection: Using a 1000x1000 m moving window, select the pixel with the highest functional

value within the window as the regional control point, considered as the primary service

providers. (2) Construct coupling relationships: The GIS "construct sightline" function is used

to connect these peak points. Further, coupling links are filtered based on a predetermined

distance threshold (d0), which is calculated using the incremental spatial autocorrelation model.

(3) Incorporate distance factors: Gaussian decay function weights are applied to each

self-coupling relationship to reflect the distance decay effect between peak points. (4) Select

coupling relationships: Based on the Minimum Spanning Tree (MST) model, the strongest

self-coupling relationships are selected from all potential coupling relationships. The formula for

calculating the distance-considered CCD (d-CCD) is:

d − CCD = ���( 2
u1 ⋅ u2

u1 + u2
2

1
2

∗ W1 ∗ U1 + W2 ∗ U2 ∗ �(���, �0)) (25)

�(���, �0) =

�−1
2×(

��
�0

)2
− �−1

2

1 − �−1
2

, ��� ≤ �0

0, ��� > �0

(26)

Where U1 and U2 represent the land function values corresponding to the LSF/LEF peak points,

respectively. W1 and W2 are the weights of these peak points, reflecting their importance in the

functional network. In this study, equal weights are assigned. Each peak point may have several

neighboring peak points, leading to multiple possible coupling relationships. G(dkj,d0) is a

Gaussian decay function based on the distance (djk) between peak points (Yang et al., 2022). By

leveraging the Pareto distribution characteristic, the Minimum Spanning Tree (MST) model is

used to simplify the calculations, selecting the strongest coupling relationship from all

long-range coupling results. This ensures that there is at most one edge connecting any two peak

points, with the edge weight being the previously calculated d-CCD value. The model's output
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ranges between 0 and 1, reflecting the strength of the coupling coordination degree, consistent

with traditional CCD models.

3.5.2.2 Minimum spanning tree

The Minimum Spanning Tree (MST) model is an algorithm used to optimize network

connections. Its goal is to construct a tree that connects a given set of points (nodes), while

minimizing the total cost of all edges in the tree and ensuring maximum connectivity among the

nodes. Common algorithms for constructing MSTs include Kruskal's and Prim's algorithms. The

MST model is widely utilized in GIS, network design, and ecological network analysis (Avram

& Bertsimas, 1992).

In this study, the MST is used to select links between points with the highest CCD, assuming that

the total cost of connections is minimized. By constructing an MST network and analyzing the

CCD strength of its edges, we can identify patterns of land function aggregation (clustering) and

isolation (dispersion) in space, thereby optimizing the connections between functional points.

The MST network is constructed using the Geo-MST Python plugin in QGIS 3.14 (Çalışkan &

Anbaroğlu, 2020). Preparation includes constructing the network using the GIS "construct

sightline" function and filtering out connections that exceed the distance threshold. Based on the

d-CCD model, each edge is assigned a d-CCD value, and the corresponding cost of that edge is

1/d-CCD. The plugin employs Kruskal's algorithm, which follows these steps: In the Geo-MST

plugin, edges are sorted in descending order based on their weights (i.e., cost values). The

algorithm examines each edge one by one to determine whether its endpoints belong to the same

set. If the endpoints are not in the same set, the edge is added to the MST, and the sets of the two

endpoints are merged. If the endpoints are already in the same set, the edge is ignored to avoid

forming a cycle. These steps are repeated until all edges have been evaluated.

By integrating the MST model, the coupling coordination degree analysis in this study can more

accurately capture the self-coupling interactions between land functions, optimizing the

pathways for providing urban ecological and social services.
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Figure 13MST Schematic (Kruskal).

3.6 Urban vitality assessment

3.6.1 Human mobility intensity and self-organizing map

Based on traditional human mobility indicators, this paper introduces the application of the

Self-Organizing Map (SOM) model. It is an unsupervised neural network technique for

visualizing and interpreting large, high-dimensional datasets (Penn, 2005). In this study, the

SOM model was used to segment the 24-hour day into distinct periods, revealing the city's

typical behavioral pattern characterized by a 16-hour active period and an 8-hour rest period.

This method is combined with the K-means algorithm for a two-stage clustering process. In the

first stage, SOM acts as an initial clustering method, determining a reasonable range for cluster

number N and assigning initial cluster centers. Subsequently, based on sample similarity,

K-means is employed to optimize the clustering achieved by SOM (WANG et al., 2019). The

clustering effectiveness is then evaluated using the Davies-Bouldin Index (DBI).

The analysis was performed using the R-kohonen package. The specific process is as follows: (1)

Hourly Human Mobility data for 24 hours across four weeks (a total of 28 days) were input into

the SOM model. To achieve optimal network performance, the number and combination of

neurons were selected based on the lowest quantization error (QE) and topographic error (TE). (2)

The weights obtained from the SOM clustering results were used as the initial cluster centers.

The optimal number of clusters for K-means was determined using the DBI. Finally, Human

Mobility Intensity (HMI) for both workdays (Monday to Friday) and weekends (Saturday and

Sunday) was calculated as the hourly mean of human mobility during active periods:



51

Human Mobility Intensity: HMI = i=1

n
 � vi

n
(27)

where vi is the human mobility data at the ith hour of the active period, and n is the total number

of hours within the active period (16 hours in this study). The HMI value reflects the average

level of human mobility during active periods, calculated separately for both workdays and

weekends, with higher values indicating higher population density and activity intensity within

the area.

3.6.2 Human mobility data & self-correction

3.6.2.1 Atypical activity adjustment coefficient

Using HMI as the base value for UV assessment, it is important to note that human activities in

certain urban areas may not align with the typical behavioral patterns identified by SOM. This

discrepancy is particularly common in night-shift workplaces, such as some industrial zones, or

nighttime recreational venues like bars and night markets:

Activity Ratio: AR =
�=1

�
 � ��

�
HMI

(28)

where vt is the HMI at the tth hour of the rest period, and m is the total number of hours in the

rest period (8 hours in this study). The term (
t=1

m
 � vt )/m reflects the average human mobility

during the rest period on workdays and weekends. An AR value greater than 1 indicates that the

area does not follow the typical activity pattern. The larger the AR value, the more the area tends

toward activity during the rest period. The Atypical Activity Adjustment Coefficient (AAAC)

was then calculated to adjust the HMI accordingly. The AAAC for the active period on workdays

and weekends was computed as follows:

Atypical Activity Adjustment Coefficient: AAAC =
�� AR ≤ 1, 1

�� AR＞1, AR
(29)

Therefore, for areas with an AR less than or equal to 1, the AAAC is set to 1, indicating no

adjustment to the HMI. For areas with an AR greater than 1, the HMI is adjusted proportionally

to the AR value.
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3.6.2.2 Temporal characteristics weighting of HMI

In addition to HMI, three indicators were calculated to comprehensively measure the

spatiotemporal patterns of UV: Leisure Activity Ratio (LAR), Human Mobility Variability

(HMV), and Human Mobility Consistency (HMC). Tang and Ta (S. Tang & Ta, 2022) use the

Night Rate to indicate the tendency for leisure activities within an area. A higher night rate

signifies more human activities during the night, reflecting the extent of nighttime economic and

social activities. However, in this study, the intensity and proportion of nighttime activities are

better represented by the AAAC. The Night Rate indicator mainly shows the tendency for leisure

activities during post-work or evening periods on rest days. Therefore, the indicator was renamed

LAR. LAR for workdays and weekends was calculated as follows:

Leisure Activity Ratio : LAR = 21

23
 � �

21

23
 � �� +

9

11
 � ��

(30)

Jacobs contrasts natural residents with "birds of passage," temporary and non-invested

neighborhood dwellers who "have no idea who is watching the street or how to watch it." Jacobs

warns that while a neighborhood can absorb a large number of these individuals, "if everyone in

the neighborhood becomes like them, they will gradually realize that the street is not safe."

Activity variability is defined as the difference in human mobility numbers at different times,

represented by the Standard Deviation (STD) of hourly human flow data throughout a 24-hour

period (L. Tang et al., 2022). This is considered a negative indicator, as higher STD values

indicate greater fluctuations in activity intensity across the day. To account for significant

differences in average human mobility numbers across different areas, the Coefficient of

Variation (CV) was used to enhance data comparability. HMV for active periods on workdays

and weekends was calculated as follows:

Human Mobility Variability : HMV = CV =
STD

Mean
(31)

where Mean represents the average human activity over 24 hours.

Lastly, the measurement of activity consistency utilized 2.5 times the Median Absolute Deviation

(MAD) to calculate the number of hours with outlier activity intensity at each sampling point
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daily. The MAD is a measure of statistical dispersion, which can be more robust against outliers

in a dataset than the standard deviation. The formula for calculating the MAD, based on a set of

observations, is as follows:

MAD = Median( Xi  − Median(X) ) (32)

Where: Xi represents each individual observation in the dataset. Median(X) is the median of the

observations. Xi  − Median(X)  represents the absolute deviation of each observation from

the median. To calculate the number of hours with outlier activity intensity, the median absolute

deviation is scaled by a factor (in this case, 2.5) to determine the threshold for identifying

outliers. Here’s the adjusted formula for outlier detection:

Threshold= 2.5 ∗ MAD (33)

Activity intensities that exceed this threshold can be considered outliers. This value is then

normalized by the total number of global outliers for that specific day (Sulis et al., 2018). HMC

for active periods on workdays and weekends was calculated as follows:

Human Mobility Consistency : HMC =
Region_outliers

Daily_outliers� (34)

3.6.2.3 CRITIC model and multi-scenario urban vitality intensity

By weighting and combining the three indicators, we obtain the final weighted coefficient for the

temporal characteristics of HMI. After weighting, the HMI is corrected to derive the Urban

Vitality Intensity (UVI):

UVI = HMI ∗ AAAC ∗ (W1 ∗ nor+ LAR + W2 ∗ nor− HMV + W3 ∗ nor+ HMC ) (35)

where W1, W2, and W3 are the comprehensive weights corresponding to each indicator,

obtained by mean value of subjective and objective weights, as described in the previous section.

Compared to a single dependent variable, the UVI in this study is distinguished by its occurrence

time and is categorized into UVI under non-volitional human activity scenarios (i.e., workday

UVI) and UVI under volitional human activity scenarios (i.e., weekend UVI).

3.7 Factor selection and driver analysis

This section focuses on constructing a regression model with multi-scenario UVI as the

dependent variable (Y) and various land evaluation factors as independent variables (X). The
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Optimal Parameters-based Geographical Detector (OPGD) model is constructed, combined with

the Multi-Scale Geographically Weighted Regression (MGWR) model to explore regression

coefficients and bandwidth of influence.

3.7.1 Spearman correlation

The Spearman's rank correlation coefficient is a rank-based measure suitable for continuous or

discrete ordinal data. Its primary advantage is that it does not require data to follow a normal

distribution and can handle nonlinear relationships. The robustness of the Spearman correlation

coefficient against outliers and non-normal data makes it particularly effective when handling

nonlinear, asymmetrical, or outlier-prone data (Fieller et al., 1957). The formula for calculating

the Spearman correlation coefficient is:

r = 1 −
6 ��

2�
�(�2 − 1) (36)

where r represents the Spearman correlation coefficient, di2 is the rank difference for the ith

observation, indicating the difference in rankings between two variables, and n is the total

number of observations. By calculating the sum of the squared rank differences and

standardizing by the sample size, the degree of correlation between variables is determined. The

Spearman correlation coefficient ranges from -1 to 1, where 1 indicates a perfect positive

correlation, -1 indicates a perfect negative correlation, and 0 indicates no correlation.

3.7.2 Optimal parameters geographical detector

3.7.2.1 Geographical detector

Spatial heterogeneity captures the inherently uneven distribution of spatial phenomena. Spatial

stratified heterogeneity analysis explores this variability by examining differences in spatial

variance both within and across distinct strata of explanatory variables. Among methods used for

this purpose, the geographical detector model is particularly effective and widely applied in

analyzing spatially stratified heterogeneity (Y. Song et al., 2020). Based on the theory of spatial

differentiation, these methods detect the determinants of dependent variables and evaluate the

relative importance of influencing factors (J. Wang & Xu, 2017; J.-F. Wang & Hu, 2012). The

driving strength of an independent variable X on a dependent variable Y is represented by the q

value; the larger the q value, the greater the influence of X on Y.
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� = 1 − ℎ=1
� �ℎ� �ℎ

2

��2 = 1 −
���
���

��� =
ℎ=1

�

�ℎ� �ℎ
2, ��� = ��2

(37)

where N is the number of samples in the study area, L is the number of categories of factor X,

�2 is the total variance of Y in the study area, and �ℎ
2 is the variance of Y within category h of

factor X. SSW is the within-category sum of squares, and SST is the total sum of squares.

A larger q-value (ranging from 0 to 1) indicates a stronger explanatory power of factor X for the

variation in Y (Cen et al., 2024).

In addition to assessing the spatial relationships between independent and dependent variables,

the model also identifies interactions between multiple X-variables, determining the direction,

strength, and linearity of their combined effects. It evaluates whether the joint effect of two

factors, X1 and X2, increases or decreases the explanatory power for the dependent variable Y.

The method calculates the q-values for factors X1, X2, and their interaction �(�1∩�2), which

is derived by overlaying the spatial layers where X1 and X2 intersect. The relationships are

classified as follows (Table.8):

Table. 8 The Interactive Types of Two Factors & the Interactive Relationship.

Description Interaction

q (x1∩x2) < Min (q (x1), q (x2)) Weakened, nonlinear

Min (q (x1), q (x2)) < q (x1∩x2) < Max (q (x1), q (x2)) Weakened, unique

q (x1∩x2) > Max (q (x1), q (x2)) Enhanced, bilinear

q (x1∩x2) = q (x1) + q (x2) Independent

q (x1∩x2) > q (x1) + q (x2) Enhanced, nonlinear

This analysis allows the identification of how different factors interact to influence the dependent

variable, helping to refine understanding of land function clustering and dispersion.

3.7.2.2 Optimal parameter

Geographical detectors require the discretization and reclassification of various independent

variables X, as different discretization methods and classification numbers can significantly

impact the relationship between driving factors and geographical phenomena. Using

inappropriate methods may lead to inaccurate reflections of these relationships. Common
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classification methods include equal interval, natural breaks, quantiles, geometric interval, and

standard deviation classification. The number of classifications typically ranges from 3 to 7,

depending on the study area's characteristics and the researcher's understanding. In traditional

geographical detectors, the choice of discretization method and scale selection relies on

subjective judgment and experience.

However, the Optimal Parameters-based Geographical Detector (OPGD) model improves upon

this by selecting the optimal discretization method, number of spatial layers, and spatial scale

parameters, enhancing spatial analysis. In this study, the OPGD model is used to iteratively

optimize discretization to determine the most effective classification method and the optimal

number of categories for each driving factor X, thereby maximizing its explanatory power on the

dependent variable Y (Cen et al., 2024).

The model calculates the q-value for each driving factor across different classification methods

and numbers of categories. The number of classifications is set between 3 and 7 due to the

computational complexity. The combination of method and classification number that yields the

highest q-value is chosen for discretization. All operations are performed in R Studio using the

"GD" package.

3.7.3 Multiscale geographically weighted regression

To overcome the limitation of the geographical detector, which can measure driving strength but

not the specific direction of influence, the MGWR model is employed. MGWR reveals spatial

heterogeneity in both the strength and direction of driving factors, while also providing insights

into the bandwidth of factor influence. This model demonstrates high explanatory power,

especially in multi-scenario analyses.

The UVI is used as the dependent variable Y, and various land socio-ecological function

sub-indicators serve as the independent variables X. Unlike the Ordinary Least Squares (OLS)

model, which establishes a global regression, the Geographically Weighted Regression (GWR)

model accounts for spatial variability, capturing local variations in the relationships between

variables. However, for phenomena involving processes operating at multiple spatial scales, a

fixed scale is insufficient (Fotheringham et al., 2009). The MGWR model extends GWR by

structuring it as a generalized additive model, allowing the estimation of local parameter
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standard errors. This enables the relationship between the response and explanatory variables to

vary across both space and scale, thus addressing overfitting issues under a uniform bandwidth

and resolving nonlinearities (Cen et al., 2024):

yi =
j=1

k

 � ���j ui, vi xij + �i (38)

For each sampling point i, MGWR constructs the coordinates (ui, vi). yi is the value of the

dependent variable at point i; bwj represents the bandwidth used for the regression coefficient of

variable j. β is the regression coefficient, and ϵi is the random disturbance term.

This study uses the quadratic kernel function and the Akaike Information Criterion (AIC) for

model selection. Land assessment indicators are pre-screened using Spearman correlation, OLS,

and the VIF test. The qualified factors are then input into the MGWR model to compute driving

coefficients and spatial bandwidths.

3.8 Spatial autocorrelation

In this study, global and local spatial autocorrelation methods were used to assess the spatial

aggregation or dispersion status of the factors, following the first law of geography: “”

Everything is interconnected, but things close together are more closely connected than things

far away’. By calculating global and local Moran's I indices, it is possible to quantify the pattern

of clustering or dispersion of spatial units within the study area.

3.8.1 Global Moran's I

This study utilizes both global and local spatial autocorrelation methods to assess the spatial

clustering or dispersion of individual factors, following Tobler’s First Law of Geography:

"Everything is related to everything else, but near things are more related than distant things."

Global Moran's I is a common measure for global spatial autocorrelation, indicating whether

spatial units are clustered or dispersed across a study area (P. A. Moran, 1948):

� =
n
S0

× i=1

n
 �

j=1

n
 � wij �� − �� �� − ��

i=1

n
 � �� − �� 2

(39)

Where S0 = �i=1
n  �j=1

n  wij，n is the total number of spatial units, yi and yj represent the attribute

values of spatial units i and j, �� is the mean attribute value of all spatial units, and wij is the

spatial weight. Moran's I values range from -1 to 1, with positive values (0 to 1) indicating
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spatial clustering (positive spatial autocorrelation), and negative values (-1 to 0) suggesting

spatial dispersion (negative spatial autocorrelation).

3.8.2 Local Moran's I

While global Moran’s I captures overall clustering patterns, Local Moran's I identifies specific

areas with clustering or dispersion, highlighting spatial dependence and heterogeneity at finer

scales (Anselin, 1995). The specific formula is:

� = j=1

n
 � wij �� − �� ∗ �2 �� − ��

j=1

n
 � wij

j=1

n
 � �� − �� 2

(40)

Based on the calculation results, the correlation between a unit and its neighboring units can be

classified into five types: "high-high" clustering, "high-low" clustering, "low-low" clustering,

"low-high" clustering, and "insignificant" clustering.
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4 RESULTSAND DISCUSSIONS
4.1 Urban vitality assessment

4.1.1 HMI description & spatio-temporal distribution

In analyzing seasonal Human Mobility Intensity (HMI), it was found that spring exhibits the

highest mean HMI, with a value of 2.506. The mean HMI gradually declines through summer

(2.400), autumn (2.172), and winter (2.077). Across all seasons, there are minimal differences in

HMI between rest days and workdays. In spring and autumn, human activity is slightly higher on

rest days, while in summer and winter, it is slightly higher on workdays. This suggests that

seasonal variations affect human activity patterns, but overall, the disparity between rest days

and workdays remains small.

Figure 14 Seasonal Temporal Characteristics of HMI.

In a more detailed hourly analysis of the HMI across all seasons, a consistent pattern emerges. In

Luohe City, human activity typically increases around 5:00 a.m., reaching a peak by 7:00 a.m.,

and maintains a steady level throughout the day before declining after 10:00 p.m. Interestingly,

the lowest HMI does not occur immediately after midnight but is recorded at around 4:00 a.m.

The analysis also reveals that this daily activity pattern remains stable across both workdays and

weekends, reflecting consistent daily work and life rhythms of the city’s residents.
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Figure 15Weekly Temporal Characteristics of HMI.

By examining the spatial patterns of human activity during the week with the highest average

HAI (spring), the analysis of weekdays (Mondays) and weekends (Saturdays) highlights different

characteristics. Data presented in three-hour intervals reveal that on rest days, the spatial

distribution of high HMI values is significantly broader between 9:00 a.m. and 12:00 p.m. On

workdays, however, high HMI values are more concentrated in specific areas. In both cases, the

highest HMI values are clustered within the built-up areas of the city. Outside these areas, HMI

is only prominent between midnight and 9:00 a.m. This reflects Luohe's urban “agglomeration

and diffusion” cycle, where residents aggregate in a fixed area for activities during fixed hours,

and spread out over a wider area at night for rest.

Figure 16 Daily Temporal Characteristics of HMI.

This spatial analysis suggests that, compared to overall activity intensity, the spatial

heterogeneity of HMI under different temporal scenarios offers more valuable insights into

human activity patterns. Specifically, spatial variability provides a clearer understanding of how

different areas experience varying levels of human activity during rest and workdays.

4.1.2 Identification of typical activity patterns

The Self-Organizing Map (SOM) analysis identified two key human activity clusters in the city:

-- Cluster 1 represents the active period from 08:00 to 23:00, with an average activity level of

2.650.

--Cluster 2 represents the rest period from 00:00 to 07:00, with an average activity level of
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1.696.

The SOM achieved optimal training performance with 24 neurons (4×6), yielding a quantization

error (QE) of 0.230 and a topographic error (TE) of 0.133. The clustering results, based on the

Davies-Bouldin Index (DBI), highlighted five clusters, with the lowest DBI achieved at this

setting.

Figure 17 SOM Clustering Analysis.

4.1.3 Activity patterns & correction factors

Analysis of the AAAC shows that while most areas adhere to the typical activity pattern, the

number of areas deviating from the pattern increases on weekends, despite only a slight decrease

in overall mean activity levels. Notably, areas such as factories and villages surrounding the

built-up zone exhibit a stable reverse-typical activity pattern, unaffected by the distinction

between rest and workdays.

Among the three correction coefficients, LAR specifically highlights areas inclined towards

nighttime leisure activities while suppressing areas such as highways, national roads, and

provincial roads. Accordingly, this partially overlaps with the areas of high fluctuation identified

by the HMV. HMV analysis indicates that, compared to farmland areas, changes in human flow
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intensity are more frequent within built-up areas. Therefore, on a macro level, built-up areas

exhibit high temporal fluctuations in human activity across a large scale. Meanwhile, both LAR

and HMV show strong spatial clustering tendencies, effectively mitigating the "road boom" and

"passing bird" effects caused by traffic flow.

Figure 18 Spatial Characteristics of Correction Coefficients.

The spatial aggregation of the indicators decreased on weekends compared to workdays. Based
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on the hour-by-hour HMI analysis, residential activity on weekends is spread over a wider area,

so the characteristics/attributes from the activity are attenuated in the furniture department.

Table. 9 Indicators of Spatial Autocorrelation of Factors.

Correction Factor Type Moran’s I Z-value

AAAC
Workday 0.838 133.504

Weekend 0.641 115.571

HMV
Workday 0.875 155.437

Weekend 0.859 151.769

LAR
Workday 0.854 147.971

Weekend 0.845 141.596

HMC
Workday 0.497 81.857

Weekend 0.340 53.507

4.1.4 Multi-scenario UVI calculations

The UVI calculations, performed across both workday and weekend scenarios, exhibit high

Moran's I values (0.905 for workdays and 0.897 for weekends), indicating strong spatial

clustering of urban vitality within Luohe City. The spatial analysis reveals that human activities

are predominantly concentrated in the built-up areas, with minimal differences between the mean

and standard deviation values of UVI between workdays and rest days (Mean = 1.396/1.395;

STD = 1.087/1.089). However, some local variations in UVI distribution exist, particularly in

regions like the peninsula, where differences become more apparent (Figure 19 (a1) - (a2)).

Figure 19 Spatial Characteristics of UVI.

Stability of UVI Hotspots: The multi-scenario analysis shows that spatial hotspots of UVI

remain largely consistent across different scenarios, indicating that the differences in residents'
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behavior patterns between workdays and weekends do not drive significant large-scale changes

in UVI distribution. The High-High (HH) clusters—areas of high vitality—are stable within the

built-up areas, showing no significant expansion toward surrounding towns. This stability

implies that the majority of daily activities are concentrated in localized zones within the city,

contributing to a consistent urban vitality pattern.

Clusters in Built-up and Surrounding Areas: Taking the built-up area on a rest day as an

example, the distribution of spatial clusters indicates that Low-Low (LL) clusters (26.471%) and

insignificant points (57.453%) dominate, while High-High (HH) clusters account for only

16.015% (795 clusters). This shows that most areas around the built-up area have low vitality. In

terms of location, the core urban area within the built-up area is still the main hub of human

activities.

Figure 20 Hotspot Analysis Based on Multi-scenario Viability.

There are no significant changes in the spatial distribution of UVI between workdays and rest

days. This pattern reflects that human activities are primarily centered in localized functional

clusters capable of meeting residents' socio-ecological needs. Consequently, instead of

large-scale movement, human activities are characterized by localized shifts under different

scenarios.
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4.2 Land function assessment

4.2.1 Land use and landscape index

The five features used to classify land in 2023 are shown in the Figure 21: Spectral Features,

Indicator Features, Nightlight Features, Terrain Features, Textural Features.

Figure 21 RF Feature Datasets.

The land use within Luohe City's planned urban area demonstrates a pattern of mixed urban and

rural development. Farmland comprises the largest share (57.71%), followed by artificial

surfaces (27.18%), green infrastructures (13.85%), and water bodies, which account for the

smallest portion (1.26%). Significant amounts of farmland remain both at the boundaries and

beyond the built-up areas. This characteristic is consistent with findings from studies on other

developing medium-sized cities in China. A 200m grid was created to transform the classified AS

and GI data into continuous land-use ratio data. Furthermore, the LSI and COHESION indices

for AS and GI were calculated at the class level using LULC data to represent the morphological

complexity and spatial clustering of land patches.
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Figure 22 LULC and Land Use Ratio Results in 2023.

4.2.2 Quality assessment

4.2.2.1 Social function assessment

The social function of land is evaluated across three dimensions: the degree of urbanization,

human settlement patterns, and transportation accessibility. The corrected nighttime light data,

referred to as LERNCI, accurately identifies the urbanization level of the old town. The built-up

area is expanding outward from a central core, with several sub-cores forming around the

periphery. WI and POP are heavily concentrated in the built-up areas, underscoring disparities in

urbanization, human settlement patterns, and transportation accessibility, and highlighting the

pronounced urban-rural divide.
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Figure 23 Qualitative Indicators of LSF.

4.2.2.2 Ecological function assessment

In the study area, large green patches are limited, requiring the evaluation to extend beyond a

simple assessment of green space area. The VQ index effectively differentiates between farmland

and green space based on vegetation quality. Results indicate that high-quality vegetation patches

are predominantly found outside the built-up area, whereas vegetation quality within the built-up

area is generally poor, with only a few scattered high-value regions. The RSEI offers a
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comprehensive assessment of environmental conditions. RSEI values are lower in high-density

built-up areas, whereas high-value regions are primarily concentrated on the outskirts and along

riverbanks. Based on the results, incorporating RSEI into the assessment further reduces the

weight assigned to farmland in the evaluation of LEF to some extent.

Figure 24 Qualitative Indicators of LEF.

4.2.3 Land functions & spatial characteristics

The table. 9 presents the subjective, objective, and composite weights, along with the spatial

heterogeneity of various factors influencing land function, according to the land function

evaluation framework. In the LEF/LSF system, the AHP evaluation consistency is λ = 0.068

≤ 0.1, demonstrating that the subjective weight assessment passed the consistency test and the

weights are valid.

Table. 10 11 Factors Weights and Corresponding Moran's I.

Goal Framework Name Objective Subjective Comprehensive Moran's I Z
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Layer Weight Weight Weight

LSF

Quantity ASR 0.258 0.150 0.204 0.767 133.838

Quality

LERNCI 0.037 0.407 0.222 0.843 144.786

HSD 0.098 0.130 0.114 0.812 136.931

WI 0.109 0.176 0.142 0.981 167.147

Structure
ACO 0.308 0.055 0.181 0.736 131.183

ALSI 0.191 0.082 0.137 0.700 129.338

LEF

Quantity GIR 0.133 0.444 0.288 0.641 114.039

Quality
VQ 0.253 0.132 0.192 0.461 77.415

RSEI 0.130 0.191 0.160 0.415 67.175

Structure
GCO 0.282 0.131 0.206 0.711 125.488

GLSI 0.203 0.102 0.153 0.731 135.439

LSF exhibits a strong clustering pattern (Moran’s I = 0.869), while within the built-up area, its

spatial distribution is relatively more balanced (Figure 25a). Similarly, LEF demonstrates a

weaker clustering pattern (Moran’s I = 0.689), with relatively sparse provision in the urban core.

High-value areas form a ring encircling the urban core (Figure 25b).

Figure 25 LSF and LEF Assessment and Profile Analysis.

The LISAmaps for LSF and LEF reveal that HH and LL clusters dominate in quantity, indicating

significant spatial polarization. The spillover effects of land socio-ecological functions are

pronounced, with variations in local land function exerting considerable influence on land

development in adjacent areas. The radar chart further illustrates the spatial distribution pattern,

showing that LSF functionality is higher in the S/SE/E directions, following a vertical trend of

"higher in the southeast and lower in the northwest." In contrast, LEF exhibits a nearly balanced

ecological supply in all directions, reflecting a more horizontal distribution.
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Figure 26 Spatial Clustering and Radar Chart of LSF and LEF.

The differing spatial clustering characteristics of LSF and LEF suggest a lack of synchronization

in the spatial provision of ecological and social functions. Thus, the coupling relationship

between social and ecological functions is spatially inconsistent.

4.3 Coupling coordination of land functions

Coupling and coordination between groups (CCD) measures the spatial mixing and equilibrium

of socio-ecological function provision. Coupling and coordination within groups (d-CCD) is

more concerned with the spatial correlation and aggregation of local peaks of functions within a

single function.

4.3.1 Inter-group coupling & functional area identification

4.3.1.1 Multi-scale inter-group coupling analysis

In the multi-scale analysis, CCD results generally show an upward trend as the scale increases

from 200m to 3000m. Specifically, at clustering scales of 600m, 2400m, and 3000m, the CCD

values exhibit a higher level of coupling coordination, indicating that at these scales, the

interaction between social and ecological functions is well-coordinated and integrated. This

phenomenon suggests that these medium scales may represent the "key scales" for achieving

effective coupling between social and ecological functions.

However, it is noteworthy that when the analysis scale exceeds 3000m, the CCD value drops

sharply. This suggests that while increasing the scale within a certain range enhances the

coupling coordination of the social-ecological system, when the scale becomes too large, the

interactions and coupling between functions weaken. This may be due to the increased spatial

distance between functional areas at larger scales, which weakens the interaction and

coordination between them. Additionally, the regional and local nature of functions limits the

effectiveness of coupling, as overly large scales may fail to maintain this close interaction.
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The coupling coordination of social-ecological functions exhibits significant spatial scale

dependence. At medium scales (such as 3000m), the coupling between social and ecological

functions reaches its optimal state. Beyond this range, the interactions between functions weaken,

and the level of coupling coordination declines accordingly.

Figure 27Multi-scale Inter-group CCD.

Spatially, the 3000m CCD results indicate that highly coupled pixels (0.9-1.0) are primarily

concentrated in the eastern portion of the built-up area, especially in newly developed zones

along the river or near transportation hubs (H-1). Moving outward from the center to the

periphery, L-CCD values generally decline in concentric layers. Low-value areas are mainly

situated along the western edge of the study area, consisting primarily of declining villages and

farmland patches (L-1). Further frequency analysis shows that Level 6 areas represent the

highest proportion, at 25.81%. Within the built-up area, Level 8 dominates the coupling areas,

with 9 pixels representing 14.52%.
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Figure 28 CCD Results & Sampling Point Expansions.

4.3.1.2 Functional area identification

Further screening of priority development areas within CCD regions (i.e., CCD levels [6,7]) was

conducted, followed by an assessment of current land function tendencies in these areas. Based

on the UVI's dependence on LSF/LEF, for social function zones, prioritizing the introduction of

additional LEF is an effective strategy to enhance UVI. For ecological function zones, as LSF

serves as the foundation and prerequisite for UV aggregation, further development of LSF is

necessary.

The situation in mixed zones is more intricate. Generally, mixed zones within the built-up area

exhibit nearly balanced socio-ecological functions, though both remain underdeveloped. Such

zones are commonly found in built-up areas. In this case, simultaneous development of

socio-ecological functions is recommended.

Mixed zones near the boundary of the built-up area are typically clusters of large towns. Given

Luohe City's expansion and incorporation of surrounding towns over the past decade, priority

should be placed on LSF development in these areas. Mixed-function zones located far from the

built-up area are often situated at transportation hubs, such as regional nodes on national and

provincial highways. In these areas, LSF development is constrained by land characteristics and

should receive primary attention.
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Figure 29 Functional Identification of the Area to be Optimized.

4.3.1.3 Historical trends in CCD

A comparison of global average CCD values from 2018 to 2024 reveals a significant decline in

the coupling coordination of land functions during the 2019-2021 period. This sharp decline can

likely be attributed to the negative effects of the COVID-19 pandemic and its associated

measures on land function relationships, as reflected in a reduction in indicators such as

nighttime lights, while vegetation indicators experienced some recovery, ultimately contributing

to the overall drop in CCD values. Following the end of pandemic control measures in 2022,

CCD values began to recover. Overall, CCD values showed a downward trend between 2018 and

2024. This suggests that, to maintain CCD stability and enhance the coupling coordination of

land functions, planners should closely monitor the situation and implement appropriate

measures.

Figure 30 Historical Trends in CCD.

4.3.2 Intra-group coupling & MST networks

4.3.2.1 Multi-scale intra-group coupling analysis

This study first applies the moving window method (1km window) to extract peak points of local

land functions (LSF/LEF). Incremental spatial autocorrelation analysis reveals that LSF exhibits
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significant spatial clustering peaks at 2950 and 5500m (Z > 0, P < 0.01), while LEF demonstrates

similar clustering at 2650m and 6100m. These threshold distances indicate pronounced spatial

clustering effects of land function peak points at specific scales, reflecting the grouping

characteristics of corresponding functions. Specifically, the 3000m threshold is typically

considered the scale range for medium-sized blocks to urban districts, where residents can access

various facilities on foot within 30 to 40 minutes—the maximum radius for walkable living

circles in numerous urban planning strategies. The distances of 2650m and 2950m approximate

the scale of walkable living circles, where both LSF and LEF can effectively form functional

clusters.

Conversely, the 6000m threshold distance corresponds more closely to the scale of a small urban

district or multiple functional areas, representing a larger urban structure. At this scale, the

distribution and connections of urban and ecological functions grow more complex, typically

necessitating public transportation or motorized travel, reflecting the integration and extension of

functions across blocks or communities. At this scale, the LEF threshold exceeds that of LSF,

indicating that ecological functions are more integrated overall, while local areas exhibit

relatively dispersed characteristics.
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Figure 31 Local Peak Point Extraction and Functional Cluster Scale Analysis of LSF/LEF.

In summary, LSF and LEF exhibit both similarities and differences in terms of aggregation

thresholds. The similarities are primarily reflected in the proximity of certain key thresholds,

particularly in the range of 2650m to 2950m. This distance aligns with the scale of a pedestrian

living circle, indicating that in medium-scale urban spaces, both social and ecological functions

can effectively form functional clusters. The differences, however, lie in the aggregation effects

at different scales. Specifically, LEF exhibits stronger aggregation effects at smaller scales (e.g.,

2650m), suggesting that the provision of ecological functions demonstrates a strong local

concentration within walking distances.

4.3.2.2 Network & functional groups

The network connectivity results based on the 3000m distance threshold are shown in Figure 32.

The strength and quantity of these connections actually reflect the weighted density of the local

peaks of social and ecological land functions, rather than the intensity of function provision.

Figure 32 Network Based on “Construct-Sight-Lines”.

A comparison of the MST networks of LSF and LEF reveals that strong/very strong links (Link

Level 4/5) in LSF are primarily concentrated in the north-eastern part of the study area,

distributed along the river in large clusters. In the northern new district, LSF peak points exhibit

little clustering and are more scattered, with some links having d-CCD values below 0.5,

indicating that LSF peak points in this area are nearly decoupled. The clusters in the peninsula

area are relatively weaker, though the overall clustering trend is already apparent.

Converting the above network into a raster using the "line density" tool can more effectively

identify local functional clusters.



76

Figure 33 Functional Group Identification.

In the LEF network, very strong/strong links (Link 4/5) are predominantly located in the

peninsula area, which houses the largest LEF functional cluster. The remaining functional

clusters are mostly scattered along the built-up area’s boundary in small formations. Both the old

district and the northern new district contain peak points but lack significant functional clusters.

Overall, the LSF network demonstrates stronger coupling coordination between LSF peak points

(Mean = 0.74) and exhibits weaker d-CCD fluctuations (STD = 0.02), resulting in more

well-defined large spatial functional clusters that heavily rely on the river. In contrast, LEF peak

points display weaker coupling coordination (Mean = 0.63) and stronger d-CCD fluctuations

(STD = 0.13), with functional clusters more scattered in small groups along the built-up area’s

boundaries, and the main cluster located in the peninsula area.

Figure 34 LEF/LSF-based MST Network.

4.4 Vitality & land coupling coordination

4.4.1 UVI correlation with inter & intra coupling

At the optimal scale for functional coupling and clustering (3km), the inter-group coupling

coordination between urban vitality and land functions shows a significant correlation (P ≤

0.01). Specifically, the Spearman correlation coefficient between the UVI and inter-group

coupling (CCD) is 0.697 on workdays and 0.723 on weekends. This indicates that, at this spatial
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scale, the combination of social and ecological functions can effectively explain urban vitality,

highlighting the crucial role of the synergy between social and ecological functions in driving

urban vitality.

In contrast, urban vitality responds only marginally to intra-group coupling of individual

functions (social or ecological). The intra-group coupling of social functions (LSF d-CCD) and

ecological functions (LEF d-CCD) does not show significant correlations with urban vitality on

either workdays or weekends. Specifically, the intra-group coupling of ecological functions (LEF

d-CCD) shows an almost zero correlation with urban vitality, suggesting that the clustering of

peak points for individual functions or local functional clusters does not significantly affect

urban vitality (Table 11).

Table. 11 Correlation of Vitality & Land Function Coupling
CCD LSF d-CCD LEF d-CCD

UVI Workday 0.697*** 0.135 0.002
UVI Weekend 0.723*** 0.149 0.026

From the above results, it is evident that the inter-group coupling coordination of social and

ecological functions has a more direct impact on enhancing urban vitality compared to individual

functions. The integrated coordination of social and ecological functions provides

multi-dimensional support. For instance, ecological functions supply green spaces and a

comfortable environment, while social functions stimulate active foot traffic and commercial

activity. Their complementarity significantly enhances the overall vitality of the city.

While the over-concentration of individual functions may bring short-term localized

improvements, its marginal effects are low and cannot directly or significantly drive vitality.

Therefore, in urban planning and design, excessive emphasis on the dense development of single

functions should be avoided, and more attention should be given to functional diversity and

complementarity. Through rational spatial planning and the integration of functions, effective

connections and interactions between social and ecological functions should be ensured to

promote the overall enhancement of urban vitality.

4.4.2 Vitality mutation with CCD level

Based on the OLS regression results between UV and CCD (y = 0.458x - 0.411, R² = 0.715), it is

clear that the higher the CCD level of the land, the higher the corresponding UVI. Urban vitality,
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according to the classification of CCD levels, can be divided into three distinct stages:

Stage III (CCD levels [8,10]): This stage demonstrates the highest urban vitality (mean UVI =

4.224). The high degree of coupling coordination between social and ecological functions

enhances resident vitality and reflects a high level of land function integration and optimization.

Stage II (CCD levels [4,7]): This stage demonstrates moderate urban vitality (mean UVI =

1.724). Regions with CCD levels above 5 ([6,7]) have established initial social-ecological

coordination, showing strong optimization potential, while areas with CCD levels below 5 ([4,5])

display weaker or decoupled relationships, necessitating long-term efforts for land function

improvement despite moderate vitality.

Stage I (CCD levels [1,3]): This stage represents the lowest urban vitality (mean UVI = 0.423),

characterized by completely decoupled land functions or minimal system development, with

limited optimization potential.

In conclusion, regions with CCD levels of [6,7] should be prioritized for development based on

varying system development modes. These regions possess a strong foundation for land function

development and account for 48.39% of the total area, indicating significant redevelopment

potential.

Figure 35 Viability Mutation Based on CCD Levels.

4.5 Analysis of UV dependence on land functions

According to the Spearman correlation model, at the 200m scale, both LSF/LEF and

workday/weekend UVI exhibit significant positive correlations (P < 0.01), with LSF showing a
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stronger correlation with UVI (Figure 36). To further validate the robustness of these correlations,

the grid size was adjusted, and mean aggregation was applied to UVI, LEF, LSF, and their

respective land function sub-indicators using fishnet data, enabling additional multi-scale

analysis.

4.5.1 Multi-scale robustness analysis

The grid sampling ratios are set at 3, 6, 9...21. The spatial distribution of the grid and its

relationship to the study area's boundaries are shown below.

Figure 36Multiscale Fishing Net.

As the scale expands from micro (200m) to macro (4200m), the correlation between UVI and

land functions gradually intensifies. At scales of 200-1800m, the correlation between UVI and

both LEF and LSF does not display significant differences between workdays and weekends.

The correlation between UVI and LEF is weaker but remains significant, suggesting that urban

vitality is relatively less dependent on ecological functions. At scales between 1800m and 4200m,

the correlation begins to fluctuate. Differences in the correlation between UVI and both LEF and

LSF on workdays and weekends become more pronounced. The correlation between UVI and

LEF increases on workdays, while the correlation with LSF declines rapidly, both peaking at the

3000m scale.



80

Figure 37Multi-scale & Multi-scenario Vitality-Land Function Correlation Curves.

LSF and LEF are used as the X variables and UVI as the Y variable to construct the driving

relationship through OLS. Across multiple scales, the F-statistics for the models remain

significant, and R² increases gradually. Land functions indeed drive variations in UVI intensity,

with greater explanatory power at macro scales, exceeding 80% at the 4200m scale.

Table. 12 Results of OLS Fitting Accuracy of UVI with LSF/LEF.

Scale Vitality Scenarios R2 F

200
Weekend 0.324 F=3453.495 P=0.000***

Workday 0.329 F=3525.688 P=0.000***

600
Weekend 0.461 F=731.854 P=0.000***

Workday 0.466 F=745.918 P=0.000***

1200
Weekend 0.601 F=344.526 P=0.000***

Workday 0.608 F=353.818 P=0.000***

1800
Weekend 0.684 F=234.569 P=0.000***

Workday 0.685 F=236.28 P=0.000***

2400
Weekend 0.762 F=203.257 P=0.000***

Workday 0.766 F=207.997 P=0.000***

3000 Weekend 0.783 F=158.626 P=0.000***
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Workday 0.782 F=157.49 P=0.000***

3600
Weekend 0.791 F=109.928 P=0.000***

Workday 0.787 F=107.431 P=0.000***

4200
Weekend 0.802 F=93.45 P=0.000***

Workday 0.805 F=94.874 P=0.000***

4.5.2 Current spatial dependency analysis

Based on the IQR test (with a whisker point of 1.5), the UVI is divided into six categories

ranging from H1 (extremely low values) to H6 (extremely high values). We can observe the

variations in each UVI category as the land ecological/social functions change (Figure 38, (b1) -

(b2)). LSF and LEF are divided into three land function service categories—low, medium, and

high—based on quantiles. Combining the two, we can classify nine service scenarios, such as

high LSF and high LEF (HH), high LSF and medium LEF (HM), and others. LSF/LEF and UVI

on workdays and weekends exhibit significant correlations, with minimal impact from the

scenarios. The UVI distribution trends on workdays and weekends are largely consistent. We use

the weekend UVI scenario as an example to examine its spatial response to land functions.

At the 600m scale, the scatterplot demonstrates a significant dependence of UVI on LSF, with

UVI levels H2-H5 highly concentrated in areas with high LSF (LSF≥0.50) and medium-high

LEF (LEF≥0.34). UVI at the H6 level responds only to LSF, but the point density becomes

slightly sparse when LEF is less than 0.18. Spatially, extremely high UVI (H6) primarily appears

in HH scenarios (H6 Number = 89), followed by HM (H6 Number = 73), and finally HL (H6

Number = 62). This indicates that urban vitality depends on a well-developed LSF, with

additional demand for LEF. This trend is more pronounced when LSF is at the median level: H6

UVI primarily appears in MH scenarios (H6 Number = 11), followed by MM and ML scenarios.

When LSF is insufficient, LEF loses its appeal, and UVI levels H2-H3 primarily occur in LH,

LM, and LL scenarios.
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Figure 38 Spatial Correlation of Land Functions with UVI 600m.

At the 1800m scale, the scatterplot is further simplified. Spatially, the effect of high LSF

becomes more pronounced, but the number of UVI points in HH, MM, and LL scenarios is

significantly higher than in other scenarios with the same LSF. When LSF is consistent, a higher

LEF is not always better; rather, LEF in a coupled state with LSF can better attract human flow

and improve UVI.
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Figure 39 Spatial Correlation of Land Functions with UVI 1800m.

At the 3000m scale, the trends shown by the scatterplot become quite clear. The UVI for H1-H3,

H4-H5, and H6 show distinct clustering tendencies, each following its own distribution pattern.

The spatial correlation diagram further emphasizes the balanced relationship between LSF and

LEF in attracting UVI.

Figure 40 Spatial Correlation of Land Functions with UVI 3000m.

4.6 Driving analysis of land factor on UV
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4.6.1 Factor screening based on correlation & VIF

The selection of the MGWR driving scale follows the principle of prioritizing the micro-scale

range of 200-1800m to capture as much spatial detail as possible. Therefore, based on the

analysis in section 4.4.2.1, the representative scale of 600m within the 200-1800m range is

selected. At this scale, the correlation between various factors and UVI is analyzed as follows,

with all results being statistically significant at p-value < 0.01.

Figure 41 Correlation Between Land Factor & UVI.

Furthermore, as the OLS driving coefficients of the various indicators for UVI on workdays and

weekends show little variation, the OLS model is constructed using UVI (Weekend) as an

example, and factors with high multicollinearity (VIF ≥ 10) are removed based on the VIF test.

At the current scale, the land cohesion indicators (GCO/ACO) were removed. The remaining

factors are used to construct a fitting model with UVI.

Table. 13 VIF Values for Individual X Indicators in OLS.
Y X1 X2 X3 X4 X5 X6 X7 X8 X9

UVI (Weekend)
ASR GIR WI NTL POP RSEI VQ GLSI ALSI
2.679 5.831 2.924 3.659 1.904 5.25 3.134 6.333 7.946

4.6.2 Factor drivers and bandwidth variation

4.6.2.1 Factor bandwidth analysis

In the MGWR model, bandwidth indicates the spatial range within which a factor exerts a

uniform influence, directly representing the scale of its influence. A larger bandwidth means that

the factor's influence remains relatively consistent over a larger area. This study incorporated

land function variables as explanatory factors, with the intercept term capturing the influence of

other uncontrolled variables such as location, resident culture and city history. Based on the

Jenks natural breaks method for bandwidth classification, we divided these locational factors into

three distinct categories: (a) Global scale (bandwidth = [959, 1710]), covering 56.082%-100% of
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the study area; (b) Semi-global factors (bandwidth = [290, 479]), covering 16.959%-28.012%;

and (c) Local factors (bandwidth = 57), covering 3.333%.

From workdays to weekends, four factors maintained consistent bandwidths: LERNCI, POP, WI,

GLSI. These persistent global factors served as constant drivers of UVI, while persistent local

factors were significant drivers of UVI heterogeneity and remained unaffected by various

scenarios. The bandwidth of the remaining five factors significantly changed depending on

human activity scenarios (Table 12).

Table. 14 Bandwidth Changes of Driving Factors on Workdays/Weekends.
NO. Name Workdays Weekends Change
X1 ASR 479 57 Semi-global → Local
X2 LERNCI 57 57 Local → Local
X3 POP 1680 959 Global → Global
X4 WI 1710 1710 Global → Global
X5 ALSI 1710 57 Global → Local
X6 GIR 57 1710 Local → Global
X7 VQ 330 1710 Semi-global → Global
X8 RSEI 290 1710 Semi-global → Global
X9 GLSI 1710 1710 Global → Global
/ Intercept 57 1710 Local → Global

ASR and LERNCI were the main driving forces, with LSF also playing a significant role (LSF

Mean(abs) = 0.148 ＞LEF Mean(abs) = 0.045). When disregarding factors with a change rate

lower than 0.005, it was observed that in autonomous activity scenarios (Weekend), factors

comprising LEF (GIR, VQ, RSEI) and factors comprising LSF (ASR) exhibited an increase in

attractiveness, whereas the attractiveness of LERNCI and POP within LSF diminished (Table

13).

Table. 15 Driving Forces Mean Changes and Directions of Driving Forces on Workday/Weekend.
System Variable Workdays Weekends Change Direction

LSF

ASR 0.207 0.217 0.010 +
LERNCI 0.424 0.356 -0.068 -
POP -0.071 -0.080 -0.009 -
WI -0.034 -0.032 0.002 /
ALSI 0.004 0.072 0.068 +

Mean (abs) 0.148 0.151 0.003 +

LEF

GIR 0.002 0.024 0.022 +
VQ -0.078 -0.024 0.054 +
RSEI 0.091 0.090 -0.001 /
GLSI -0.054 -0.057 -0.003 /
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Mean (abs) 0.045 0.039 -0.059 -
Intercept -0.136 -0.195 -0.059 -

4.6.2.2 Coefficient analysis of bandwidth stabilization factors

(1) Persistent Global Factors

From workdays to weekends, all three persistent global factors exhibited negative driving forces.

UVI decreased with increases in population, accessibility, and the complexity of green

infrastructure patch morphology. The influence of WI was mild, while POP exerted the most

significant impact.

Table. 16 Changes in Driving Forces of Persistent Global Factors on Workday/Weekend.

Workdays Weekends

Variable Mean STD Min Median Max Mean STD Min Median Max

POP -0.071 0.002 -0.074 -0.071 -0.068 -0.08 0.017 -0.099 -0.086 -0.032

IW -0.034 0.001 -0.037 -0.034 -0.031 -0.032 0.001 -0.035 -0.032 -0.03

GLSI -0.054 0.003 -0.058 -0.056 -0.048 -0.057 0.004 -0.061 -0.058 -0.05

(2) Persistent Local Factors

The only persistent local factor was LERNCI, acting as a positive driver. This indicates that UVI

generally increased alongside the degree of urbanization. Notably, the driving force associated

with LERNCI exhibited the highest mean value among all factors. This finding underscores the

attraction of population aggregation and activities facilitated by well-developed infrastructure.

Table. 17 Changes in Driving Forces of Persistent Local Factors on Workdays/Weekends.

Workdays Weekends

Variable Mean STD Min Median Max Mean STD Min Median Max

LERNCI 0.424 0.214 -0.735 0.405 1.187 0.356 0.246 -1.861 0.379 1.073

Figure42 illustrates the spatial distribution of the LERNCI coefficient. The coefficient of

LERNCI showed both positive and negative driving effects. Within the urban core (Area-3),

increasing LERNCI values were associated with rising UVI. In the peninsula area (Area-2),

LERNCI showed minimal impact on UVI. However, on the urban fringe, especially in logistics

and warehousing areas (Area-4) and northern rural clusters (Area-1), increased light appeared to

be linked with decreased human activity.
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Figure 42 Persistent Local Driving Factors.

4.6.2.3 Coefficient analysis of bandwidth increase factors

An increased bandwidth implies an expanded spatial range of homogeneous influence. Notably,

VQ and RSEI, previously categorized as semi-global factors of LEF, transitioned to global

factors. Meanwhile, the GIR and the intercept exhibited a transition from local to global

influence.

Overall, the driving force of RSEI remained stable across both workday and weekend scenarios.

VQ's negative impact on UVI decreased significantly during weekends. The green infrastructure

quantity factor, GIR, consistently acted as a positive driver of UVI, with a significant increase in

its influence during weekends.

Table. 18 Changes in Driving Forces of Increased Bandwidth Factors from Workdays to Weekends.

Workdays Weekends

Variable Mean STD Min Median Max Mean STD Min Median Max

VQ -0.078 0.063 -0.25 -0.056 -0.011 -0.024 0.001 -0.026 -0.025 -0.023

RSEI 0.091 0.04 -0.012 0.093 0.165 0.09 0.002 0.086 0.09 0.094

GIR 0.002 0.109 -0.352 -0.009 0.79 0.024 0.001 0.023 0.024 0.027

Intercept -0.136 0.185 -0.624 -0.16 0.712 -0.195 0.002 -0.199 -0.194 -0.192

The most notable change observed in the coefficients of RSEI, VQ, and GIR was the

disappearance of cold spots within the built-up area during weekends. The localized negative

driving effects of RSEI and GIR observed during workdays disappeared on weekends, resulting

in an overall positive influence on UVI. Although VQ remained a negative driver, its impact

weakened. This indicates a shift in green infrastructure function from landscape to recreational

use. Notably, the increased demand for green spaces during weekends resulted in higher UVI in

areas characterized by high LEF.
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During workdays, the intercept served as a local factor, representing locational attributes such as

the constraints imposed by commercial or work areas on human activity and UV. During

weekends, the absence of these constraints under volitional human activity scenarios led to

significant bandwidth changes in the intercept.

Figure 43 Driving Factors with Increased Bandwidth.

4.6.2.4 Coefficient analysis of bandwidth decrease factor

Several factors exhibited a decrease in bandwidth. ASR transitioned from a semi-global to a local

factor, while ALSI shifted from global to local influence. ASR exhibited a stronger driving force

compared to ALSI, but ALSI demonstrated greater variations in influence across different

scenarios.

Table. 19 Changes in Driving Forces of Decreased Bandwidth Factors from Workdays to Weekends.

Workdays Weekends

Variable Mean STD Min Median Max Mean STD Min Median Max

ASR 0.207 0.042 0.155 0.192 0.287 0.217 0.192 -0.083 0.154 0.892

ALSI 0.004 0.001 0.001 0.004 0.007 0.072 0.221 -0.616 0.024 1.462

Both on workdays and weekends, ASR showed a strong positive driving force in the core areas,

with increased heterogeneity and a significant increase in the maximum driving force (from

0.287 to 0.892), highlighting a preference for urban built-up areas. During weekends, UVI was

more attracted to the ASR of the built-up area, which suppressed surrounding townships. This

also explained the change in ALSI coefficients, transitioning from global positive driving to

significant local positive driving (maximum from 0.007 to 1.462), with the emergence of local

negative driving effects (Figure 44).
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Figure 44 Driving Factors with Decreased Bandwidth.

4.6.3 Factor interaction analysis

The interaction between various land assessment factors is further explored using the OPGD. To

achieve the optimal model performance, the best factor discretization parameters are identified

through an exhaustive search.

4.6.3.1 Optimal discrete parameter

The explanatory power of each driving factor varies significantly across different discretization

methods and classification numbers, which may introduce bias into the study's results. The study

typically selects the combination with the highest q-value as the optimal discretization parameter.

These optimal parameters better describe the influence of driving factors on geographical

phenomena. The optimal classification method for the X1_GIR factor is Quantile, with 7 as the

best number of classes. For the X2_ASR factor, the optimal classification method is Equal, with

6 as the best number of classes. The detailed discretization results for each factor are as follows:
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Figure 45 Optimal Discrete Optimization (Weekend).

During the discretization process, the optimal discretization parameters for workdays and

weekends were consistent, showing a high degree of uniformity. At this point, they exhibited the

highest explanatory power for the independent variables, with all p-values passing the

significance test.

Table. 20 Factor Discrete Parameters at 600m Scale

Land Factors Discretization Method Classification

X1_GIR Natural 7

X2_ASR Natural 6

X3_WI Equal 7

X4_LERNCI Natural 5

X5_POP Natural 7

X6_RSEI SD 6

X7_VQ Natural 7

X8_GLSI Quantile 7

X9_ALSI SD 6

4.6.3.2 Urban vitality: key factor interactions

Based on the analysis results from the OPGD, LERNCI (urbanization level) was identified as the

strongest core factor, consistent with the findings from the MGWR model. The interaction

combinations of LERNCI with other factors generally exhibit high q-values, indicating its strong
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explanatory power for UV. Since the OPGD does not provide the positive or negative direction

of the factors' influence on Y, we adopt the MGWR results for driving factor analysis, marking

positive drivers as (+) and negative drivers as (-), (Figure 46).

On workdays, the strongest factor interaction combination is LERNCI (+) and ASR (+), with a

q-value of 0.703, indicating a significant positive impact on UV. This is followed by LERNCI (+)

and VQ (-) (q-value of 0.698), and LERNCI (+) and POP (-) (q-value of 0.686). On weekends,

the ranking of factor combinations changes, with LERNCI (+) and VQ (-) (q-value of 0.699)

becoming the strongest combination, followed by LERNCI (+) and GLSI (-) (q-value of 0.695),

and LERNCI (+) and ASR (+) (q-value of 0.693), (Figure 46).

This shift suggests that on weekends, the attractiveness of high urbanization and high lighting

factors to urban vitality decreases. The combination of LERNCI and POP, related to residential

factors, drops from third to fourth place, replaced by the combination of LERNCI and GLSI. In

contrast, vegetation-related factors (VQ and GLSI) show a significant increase in driving force

on weekends, reflecting the enhanced explanatory power of ecological functions for UV on

weekends. Compared to workdays, the q-value gap between factor interactions on weekends

narrows, indicating more diversified driving factors.

For example, population density (POP) independently shows a negative impact on UV, likely due

to high population density often leading to overcrowding and resource strain. However, when

combined with the urbanization factor (LERNCI), despite the negative impact of POP on UV,

urbanization can mitigate these negative effects by improving infrastructure and enhancing

resource allocation efficiency. On the one hand, this nonlinear relationship suggests that while

POP alone negatively affects UV, under high levels of urbanization, these negative effects may

be alleviated or offset by the positive effects of urbanization, thereby enhancing overall urban

vitality. On the other hand, this also highlights a potential risk for planners: relying too heavily

on single-factor development may suppress UV, emphasizing the importance of functional

diversity and integrated planning, (Figure 46).

4.6.3.3 Nonlinear enhancements in factor combinations

Most factor combinations exhibit bilinear enhancement (q(A∩B) > max(q(A), q(B))), meaning

that the interaction of two factors has greater explanatory power for UV than either factor alone.
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This suggests that the combination of these two factors produces an enhancement effect. For

instance, the previously mentioned combination of LERNCI (+)∩ POP (-) demonstrates this

phenomenon. In this case, the synergy between the two factors shows that their combined

influence explains the target phenomenon more effectively than when they act independently.

However, some factor combinations show nonlinear enhancement (q(A∩B) > q(A) + q(B)),

where the combined effect of the two factors on the target phenomenon is much greater than the

sum of their individual effects. For example, factors such as GIR (Green infrastructure ratio) and

GLSI (green infrastructure landscape shape index) are not typically strong attractors of resident

activity on their own, but when combined with other factors, they often exhibit this nonlinear

enhancement. This phenomenon typically indicates the presence of a complex nonlinear

interaction between factors, where the combined effects are not simply additive, but generate

additional explanatory or driving power.

Figure 46 Factor Interaction Results for Multi-scenario UV.

Nonlinear enhancement combinations show some variation between workdays and weekends

(Figure 46). For instance, the combinations of GIR (green infrastructure ratio) with ASR

(artificial surface ratio), POP (population density), RSEI (remote sensing ecological index), or

GLSI (green infrastructure landscape shape index) exhibit nonlinear enhancement across

different scenarios. The combination of GIR∩VQ (vegetation quality) demonstrates nonlinear
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enhancement only on weekends, suggesting that resident activities are more influenced by the

natural environment and vegetation quality during this time. On the other hand, the combination

of GIR∩ALSI (artificial surface landscape shape index) shows similar effects only on workdays,

indicating that on workdays, resident activities are more influenced by the combined effects of

urban artificial surface morphology and green infrastructure.

Similarly, the combinations of GLSI (green infrastructure landscape shape index) with GIR, WI

(weighted road network integration), POP, RSEI, VQ, and ALSI also demonstrate nonlinear

enhancement across different scenarios. Notably, the GLSI∩ASR combination shows nonlinear

gain only on weekends. Considering the previously discussed priority of UV’s dependency on

land functions, LSF serves as a prerequisite for the effectiveness of LEF.

These results reveal the complex interactions between factors and their multidimensional impact

on urban vitality, especially under different social and environmental scenarios. Therefore, urban

planning policies should consider these complex factor interactions and optimize the

coordination of multiple factors to balance positive and negative effects, maximizing urban

vitality.
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5 NEW SCIENTIFIC RESULTS
Thesis 1: A self-calibrating urban vitality (UV) assessment method and a multi-source

data-based land function evaluation framework are proposed.

Current Situation: Many studies rely on static indicators or single data sources, failing to capture

the dynamic spatiotemporal fluctuations in urban human activities. Existing UV assessments

overlook variations between workdays and weekends, while conventional land function

evaluations—predominantly one-dimensional—do not fully reflect the multifunctional and

interrelated nature of urban land.

Innovation: This study integrates high-temporal-resolution human mobility data from Baidu LBS

with the SOM algorithm to self-calibrate UV assessments, effectively distinguishing workday

and weekend activity patterns. Simultaneously, this study leverages multi-source satellite data

(Landsat, MODIS, and VIIRS) to develop a comprehensive evaluation framework for land

functions, spanning quantitative, qualitative, and structural dimensions. Moreover, a novel

method is introduced to capture spatial heterogeneity and the intricate interactions among land

functions. Collectively, these innovations overcome the limitations of static, one-dimensional

approaches and provide a robust, data-driven framework that simultaneously advances urban

vitality assessment and land function evaluation for sustainable urban planning.

Related Results: Result (1) shows significant spatial spillover and distinct workday/weekend UV

patterns. High-temporal Baidu LBS and multi-source satellite data capture dynamic urban

activity and land functions, validating our integrated assessment framework.

Thesis 2: Revealing the multi-scale dependence between urban vitality and land

social/ecological functions.

Current Situation: Although studies increasingly recognize the role of land social functions (LSF)

in enhancing UV, the role of ecological functions (LEF) is often overlooked. Furthermore, many

studies focus on single-scale analyses, which miss the variability and stability of these

relationships across spatial scales.

Innovation: This study evaluates the robustness of the relationship between LSF/LEF and UV

across multiple spatial scales, uncovering a multi-scale dependence. The findings highlight that
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LSF is a stronger driver of UV across scales, and the research quantifies UV's dependence on

both LSF and LEF across these scales.

Related Results: Result (2) reveals optimal LSF/LEF coupling at 3000 m and scale-dependent

UV sensitivity. LSF exerts stronger influence than LEF, confirming multi-scale dependence of

land functions on urban vitality.

Thesis 3: Quantifying the correlation between urban vitality and land function CCD..

Current Situation: Although early studies (e.g., Jacobs) recognized a link between mixed land

functions and urban vitality, quantitative research on their coordinated integration remains

limited. Most studies focus on physical mixing, overlooking the significance of balanced

integration in enhancing urban vitality.

Innovation: This study extends traditional mixing approaches (e.g., land use and POI integration)

by employing OLS regression, which confirms a positive correlation between conventional

functional mixing and urban vitality (coefficient = 0.458, R² = 0.715). Crucially, to quantify the

intricate relationship between CCD and urban vitality, both the traditional CCD model and an

enhanced d-CCD model—integrating Gaussian decay functions and Minimum Spanning Tree

networks—are utilized. The findings reveal a nonlinear, threshold-driven relationship,

demonstrating that balanced functional integration significantly amplifies urban vitality and

providing specific thresholds to inform high-efficiency urban development strategies.

Related Results: Result (3) finds CCD peaks at 3000 m with a stable correlation (~0.7) and

nonlinear threshold effects, confirming the importance of balanced functional integration for UV.

Thesis 4: Analyzing the driving effects and bandwidths of land function factors on urban

vitality in different scenarios in Luohe.

Current Situation: Traditional studies often overlook the variation in urban vitality across

different temporal scenarios and the specific roles and influence ranges of various land function

factors within these scenarios.

Innovation: This study employs the MGWR model to analyze the driving effects and bandwidths

of land function factors on UV under different scenarios in Luohe. The research highlights how

land factors exert significant driving forces on UV across different temporal contexts, such as
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workdays and weekends. Moreover, the study reveals variations in the bandwidths of each

factor’s influence on UV across different scenarios, demonstrating the diversity of land function

factor impacts. This multi-scenario analysis offers insights into the varied influence of land

function factors.

Related Results: Results (4 & 5) show that LSF has a consistently stronger influence on UV,

while MGWR analysis detects key drivers (e.g., ASR, LERNCI) with variable influence ranges

across scenarios.

Thesis 5: Uncovering the nonlinear enhancement effects among land function factors.

Current Situation: Most current research focuses on the single linear effects of factors on UV

However, urban vitality is the ultimate geographic outcome of a city as a complex system. The

complex interactions among factors in geographic processes and the potential compound effects

they generate should not be overlooked.

Innovation: Through OPGD analysis, this study uncovers the complex interactions among land

function factors and their bilinear/nonlinear enhancement effects when combined. For example,

the combinations of LERNCI (+) and ASR (+), as well as LERNCI (+) and VQ (-), demonstrate

significant nonlinear enhancement effects in specific scenarios. These findings suggest that urban

planning and land use optimization should fully consider the interactions between factors to

achieve more effective improvements in urban vitality. Furthermore, the continuous

intensification of single factors may suppress vitality. As a complex system, enhancing urban

vitality should begin with the coupling of social and ecological functions at both the factor and

functional levels, taking into account the coordinated development of multiple factors. This study

offers a new scientific perspective for understanding the interactions between land function

factors and their overall impact on urban vitality.

Related Results: Result (6) shows significant nonlinear enhancement among land function

factors. OPGD confirms that combinations (e.g., LERNCI∩ASR, LERNCI∩VQ) amplify UV,

emphasizing coordinated integration.

Note: The above result codes are consistent with the order of results in section 6.1 below.
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6 CONCLUSIONAND PROSPECTS
6.1 Summary of the dissertation

Since the mid-20th century, global urbanization has accelerated, making cities the primary spaces

for human habitation, where vitality has become a crucial indicator of sustainable development

and urban quality. Urban vitality (UV) not only reflects the dynamic interactions and

supply-demand coordination within the urban system, particularly the balance between human

and land relationships, but also indicates the efficiency with which residents utilize urban space

and resources, as well as the city's attractiveness to populations, capital, and other productive

factors. However, in the face of novel human activity data brought about by the information age,

current urban vitality assessment systems seldom delve deeply into the dynamic temporal

changes in this data and its coupling/driving relationships with land functions.

Therefore, this dissertation proposes a novel UV assessment method, aimed at leveraging high

temporal and spatial granularity data to systematically evaluate and analyze the spatial patterns

of urban vitality and its interrelationships with land functions, thereby providing a scientific

basis for optimizing urban planning and enhancing sustainable urban development. The specific

objectives are: 1) to assess urban vitality and describe its spatial patterns; 2) to evaluate the

socio-ecological functions of urban land and calculate the intra-group and inter-group coupling

coordination degrees; 3) to analyze the impact of land coupling coordination on urban vitality; 4)

to explore the multi-scale spatial response relationships between urban vitality and land social

function (LSF) and land ecological function (LEF); and 5) to assess the driving effects and

scopes of land function factors on urban vitality under different scenarios, and to further describe

the interactions among these driving factors.

This study encompasses 4 aspects: urban vitality assessment, land function evaluation, and

exploration of human-land relationships. (1) Urban vitality assessment: Based on Human

Mobility Data provided by Baidu LBS services, the Self-Organizing Map (SOM) method is

employed to identify typical activity patterns. Self-calibration is conducted by analyzing the

temporal distribution characteristics of human activities (stability, volatility, day-night ratio),

leading to the construction of an Urban Vitality Index (UVI) under various scenarios

(workday/weekend). (2) Land function evaluation: Landsat satellite data is utilized to perform
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supervised classification using the Random Forest (RF) model to obtain land classification data,

and landscape pattern indices are calculated based on FRAGSTATS 4.2. Integrating multi-source

satellite data from MODIS and VIIRS, a comprehensive function evaluation is conducted from

three dimensions: quantity, quality, and structure of the land. (3) Under a socio-ecological (SE)

framework, the coupling coordination degree (CCD) model was first used to calculate

inter-group coupling coordination relationships. Furthermore, by integrating the Minimum

Spanning Tree (MST) model and the Gaussian decay function, the traditional CCD was weighted

to further calculate intra-group coupling coordination relationships for LSF (land social function)

and LEF (land ecological function). (4) Exploration of human-land relationships: The

relationship between urban vitality and land is explored at three levels: land coupling, land

functions, and land factors. At the land coupling level, an Ordinary Least Squares (OLS) model

is used to fit the relationship between UVI and land CCD, and historical data from 2018 to 2024

is calculated to show future trends. At the land function level, the stability and priority of UV's

multi-scale dependence on LSF and LEF are studied through IQR classification and spatial

response analysis. At the land factor level, a Multi-Scale Geographically Weighted Regression

(MGWR) model is employed to analyze the driving strength and scope of land function

sub-factors on urban vitality under different scenarios. The OPGD is used to reveal interactions

among various land function factors and their nonlinear enhancement effects on UV.

The results obtained are as follows: (1) Urban vitality and land functions exhibit significant

spatial spillover effects within the built-up areas. The distribution of urban vitality in Luohe is

highly unbalance, with high-vitality areas concentrated in the built-up zone. LSF (land social

function) and LEF (land ecological function) also tend to cluster in this area, but their spatial

distributions are not synchronized. Moran's I analysis reveals a significant spatial autocorrelation

between urban vitality and socio-ecological land functions, showing a polarization effect, where

high/low vitality areas exert positive/negative influences on surrounding regions. (2) LSF and

LEF exhibit optimal coupling at the 3000m scale. The CCD reaches its highest value at a scale

of 3000 meters, closely aligning with the aggregation thresholds of LSF and LEF

(2650m/2950m). This reflects the current urban functional clusters and living circle scale in

Luohe. (3) Inter-group coupling of LSF-LEF contributes more to urban vitality than

intra-group coupling of single functions. The d-CCD indicators for both LSF and LEF show
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no significant correlation with the urban vitality index (UVI). However, the correlation between

CCD and UVI remains stable around 0.7 across different scenarios, and UVI peaks when the

CCD level is ≥ 8 (0.7 ≤ CCD < 1.0). Historical data shows a declining trend in land

coupling in Luohe, indicating potential risks of low vitality in the future due to functional

decoupling. (4) LSF has a stronger influence and priority over LEF in affecting UV.

Multi-scale analysis shows that the correlation between LSF and urban vitality is consistently

higher than that of LEF. High LSF is a prerequisite for high vitality, while the effectiveness of

LEF depends on the sufficient provision of LSF. (5) The MGWR analysis identifies ASR and

LERNCI as the main drivers of urban vitality, with weekend human activity increasing

demand for GIR and VQ. Factors such as VQ, RSEI, GIR, ASR, and ALSI exhibit varying

spatial influence ranges (i.e., bandwidth) across different scenarios. (6) The interaction of land

factors in shaping UV. OPGD analysis reveals nonlinear enhancement effects between driving

factors, such as the combinations of LERNCI∩ ASR and LERNCI∩VQ. Considering the

interaction of these factors helps mitigate the risk of localized low vitality caused by the

over-strengthening of single factors.

The study's results indicate that the formation of urban vitality is closely related to the

socio-ecological characteristics of land functions, showing complex interactions across different

spatial scales. Optimizing and coordinating land functions play a crucial role in enhancing urban

vitality, providing new theoretical foundations and practical references for future urban planning.

Future research should further integrate multi-source data and advanced analytical methods to

explore the dynamic changes in urban vitality and its driving mechanisms, thereby providing

scientific support for building more livable and vibrant urban environments.

6.2 Discussion & recommendations

Long et al. proposed a new future-oriented design paradigm known as Data Augmented Design

(Y. Long et al., 2021). This approach aims to conduct scientifically informed, problem-oriented

planning through data and image analysis. Building on this foundation, the present study seeks to

apply Data Augmented Design to effectively integrate research methods and findings into future

urban planning and design.

6.2.1 UV growth poles & polycentric construction
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a. To enhance UV, it is recommended to prioritize the establishment of growth poles within

developed areas to stimulate vitality in the surrounding regions.

Jacobs's insights emphasize that vitality extends beyond mere activity intensity, encompassing

diversity and consistency in urban activities and the people involved (Jacobs, 1961). Urban life

follows a dynamic pattern, with fluctuating activity levels over time (Dogan & Lee, 2024). Based

on Moran's I analysis, areas with high UV have a significant positive impact on adjacent regions.

However, the HMC index for Luohe reveals that while roads and parks attract temporary flows

of people, they struggle to sustain long-term vitality. The built-up area lacks zones of sustained

high-intensity human activity, indicating the absence of vitality growth poles. In other cities,

such poles are typically driven by large shopping malls (Hami et al., 2018), theme parks (Yue et

al., 2019), or green spaces (Nambuge et al., 2020). However, in Luohe, such "time-killing"

high-traffic areas have yet to be established.

Through the MGWR model, local driving factors (e.g., ASR and LERNCI) have been identified

as key determinants of vitality distribution. Based on this, establishing growth poles in areas with

significant driving effects (e.g., Zone 3 in the northeast riverside area) would not only leverage

the positive influence of LSF growth on UV but also effectively stimulate vitality in surrounding

regions.

b. Building a polycentric vitality-landscape structure represents a more long-term planning

vision.

However, growth pole construction should not be limited to the concentration of resources in a

single area. Although Jacobs emphasized the importance of small blocks and high density for

vitality (Jacobs, 1961), research shows that these factors have a limited or even negative impact

on UV at Luohe's current stage of urbanization. Therefore, a singular focus on growth poles will

not resolve the issue.

Data indicates that Luohe's UVI (as analyzed in Section 4.1.4) and the spatial distribution of LSF

(from the evaluation in Section 4.2.3 and MST network community analysis in Section 4.3.1)

exhibit characteristics of single-center expansion, with high values concentrated in the old city.

This monocentric structure limits vitality growth in peripheral areas. In contrast, a polycentric

distribution model similar to LEF is more aligned with the city's long-term development needs.
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Therefore, cultivating multiple urban centers and distributing vitality across various regions will

contribute to the sustained enhancement of overall urban vitality (J. Li et al., 2016).

The global trend toward polycentric cities has been widely recognized. As Peter Hall et al.

demonstrated in their study of Northwestern European metropolitan areas, a polycentric structure

effectively promotes balanced urban and regional development (Hall, 2006). Empirical research

in China also shows that polycentric structures not only enhance urban vitality but also drive

economic growth and social development (Lv et al., 2021; X. Wang et al., 2022). Among them,

Shenzhen has achieved remarkable results in polycentric development, which is considered to be

effective in relieving overcrowding in the central urban area and forming a number of functional

district vitality centers (Xie et al., 2018). Research based on Baidu heat maps indicates that

polycentric structures, by dispersing traffic and resources, play a vital role in promoting urban

vitality and sustainable development (J. Li et al., 2016). Luohe should draw on these experiences

to build a polycentric structure, optimize land and vitality distribution, and enhance the city's

overall competitiveness.

6.2.2 Mixed social-ecological functions

In Luohe, LSF is primarily concentrated in the urban core, while high LEF areas form a ring

around the developed zones, reflecting a "high-edge, low-center" distribution pattern (Cen et al.,

2024). The differing clustering characteristics of LSF and LEF suggest that their spatial

distribution is not synchronized. Mixed land use, as an active urban public policy, has been

shown to produce positive externalities for cities in various aspects (Gu et al., 2019).

In urban renewal and sustainable development practices in Western countries, mixed land use has

gradually become an important tool in urban planning. Scholars such as Rowley (1996) and

Hoppenbrower (2005) categorized mixed-use development into four scales: urban, district,

neighborhood, and building. The Urban Land Institute (ULI) in the United States categorizes

mixed-use patterns into three scales: mixed-use sites at the urban scale, mixed-use walkable

areas at the community scale, and vertical mixed-use buildings at the building scale (Mandelker,

2023). This study does not address the building scale of mixed-use development; instead, it

focuses on three scales: urban scale (Built-up and Unbuilt-up Areas), functional clusters (within

developed areas), and neighborhood (grid) scales.
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6.2.2.1 Multi-scale relationships for vitality-land coupling

At the city scale, Moran's I analysis shows that high UVI areas (primarily the urban core) remain

consistent across different scenarios, indicating that the developed area as a whole can meet

residents' demand for land multifunctionality. However, UVI significantly decreases around the

edges of the developed area, suggesting that the functional mix needs optimization. Based on the

functional identification results (4.3.2.2), more social functions need to be introduced. In this

study, the gap between urban and rural land functions and vitality is significant, with the

developed area holding an advantage in terms of social-ecological functions and UV indicators.

To reduce the urban-rural development imbalance, spatially balanced development strategies

should be implemented.

At the district scale, the phenomenon of "vitality migration" is revealed: the peninsula area

attracts large crowds on weekends, but due to insufficient LSF functions, the population

significantly decreases on workdays. Functional imbalances lead to periodic migration of

residents in terms of foot traffic and functional needs, increasing the commuting burden. In

Luohe’s old city, although UV values are high, the area falls under the "HL" (high LSF, low LEF)

category due to insufficient LEF functions. Therefore, the solution is to improve vitality by

optimizing social and ecological functions.

At the neighborhood scale, Jacobs (Jacobs, 1961) and Hoppenbrower (Hoppenbrouwer & Louw,

2005) both emphasized that the neighborhood is a core unit for studying land use mix and urban

vitality. Through compact city development, land resources can be utilized more efficiently

(Sulis et al., 2018; Xia et al., 2022) . However, the paradox of compact cities is that high-density

areas may lack sufficient social and ecological services(De Roo, 2000; Neuman, 2005).

Therefore, in addition to the aforementioned polycentric approach, it is recommended to improve

vegetation quality and increase street greenery to balance human-land functions, leveraging the

negative influence of LEF sub-factors (GLSI/VQ) on UVI to regulate vitality distribution

(Martinez‐Fernandez et al., 2012).

6.2.2.2 Coupling planning based on functional dependencies

Multi-scale spatial dependency analysis reveals that LSF has a significant impact on UV, while

the role of LEF is relatively minor. Human activities show a certain dependency on greenery and
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vegetation, which can enhance UV, but their effectiveness must be grounded in a robust social

function foundation.

(1) Improvements in the planning of the urban core, especially the HM and HL areas identified in

the analysis in Section 4.4.3, are recommended. It is suggested to enhance LEF in three aspects:

quantity, quality, and structure. In terms of quantity, increasing green infrastructure, such as

street parks and rooftop gardens, will enhance the physical capacity for ecological functions. In

terms of quality, improving vegetation coverage, diversity, and carbon storage (e.g., converting

grass to shrubs, shrubs to trees) will further boost ecological functions. Structurally, it is

important to refine the texture of functional zones to ensure the organic integration of social and

ecological functions, avoiding overly rigid separations.

(2) For areas surrounding the developed zones, it is recommended, based on the functional

identification results, to focus on regions with a CCD rating of [6.7], which have a high potential

for redevelopment and are typically dominated by ecological functions. More LSF should be

introduced in these areas, with the goal of raising the CCD level above 8, surpassing the critical

UVI threshold. Under the current "stock optimization" guiding principle, priority should be given

to improving road network accessibility and infrastructure (e.g., supermarkets, functional

buildings), promoting pedestrian traffic, and ensuring the implementation of mixed land use.

Jacobs emphasized that to achieve urban diversity, streets should be designed to be short and

easy to navigate, avoiding a sense of isolation and monotony. Additionally, LEF structure

optimization could break down large functional nodes into smaller ones. Although the total

functional capacity would remain unchanged, this would enhance accessibility and functional

integration, meeting residents' needs and promoting mixed land use.

When exploring the ratio of LSF to LEF, it is important to note that the optimal proportion still

requires further investigation. Although LEF and LSF were equally weighted at 0.5:0.5 in CCD

calculations, this study found through correlation analysis that the optimal ratio of UVI to

LSF/LEF is 0.72:0.28. Therefore, it is recommended that LEF constitute around 30% of the total.

This proportion is supported by other studies, such as the "3-30-300" rule proposed in Spain,

which suggests that residents should be able to see at least three trees from their homes, each

neighborhood should have 30% tree canopy coverage, and the nearest park or green space should

be within 300 meters of any residence (Konijnendijk, 2023) . According to Chinese standards,
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the green space area in new developments should not be less than 30% of the total area, while in

old city renovations, it should not be less than 25%, and for plazas, the minimum green coverage

should be 35% (CJJ/T85-2017).

These comparisons suggest that although equal weighting is commonly used in CCD analysis,

the proportion of LEF can be adjusted based on the specific characteristics and vitality needs of

different regions to promote sustainable urban development and vitality enhancement.

6.2.3 Factor-based vitality creation and risk

This study primarily analyzed UVI under autonomous human activity conditions and

differentiated the influence of global, semi-global, and local factors based on bandwidth. Global

factors should serve as macro-level guidelines for policy-making, while semi-global and local

factors should guide specific development needs based on their spatial variations (X. Wang, Yao,

et al., 2023). Human activity is more sensitive to changes in land function on weekends

compared to workdays, indicating that the driving effect of land factors is more crucial during

this time.

6.2.3.1 Drive force & bandwidth

On weekends, the global factors and their driving forces are ranked as follows: RSEI (+) > POP

(-) > GLSI (-) > WI (-) > GIR (+) = VQ (-). The significant positive impact of RSEI on UV

suggests that a balanced mix of vegetation, warmth, and humidity is conducive to vitality growth

(Z. Fan et al., 2021). In contrast, the VQ indicator shows a negative influence on UV, indicating

that pure vegetation cover and carbon storage often do not align with the direct requirements of

urban vitality. High vegetation quality alone (potentially creating confined spaces or other

limitations) does not necessarily enhance vitality. Studies on the relationship between urban

vitality and green spaces suggest that intrinsic factors related to vegetation alone may not

effectively foster vitality. This is a recurring observation: despite thoughtful design, many urban

spaces remain underutilized, leading to reduced vitality (F. Li et al., 2017; Yue et al., 2019).

Moreover, although urban spaces are influenced by various factors due to their multifaceted

nature, our understanding of how different urban "goals" and "characteristics" interact remains

limited (Ding & Wang, 2024). Similarly, the study by Guo et al. in Beijing focused on internal

factors such as land and park reputation, but it found that these internal factors had little to no
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impact on park service areas (S. Guo et al., 2019). Overall, internal factors seem to have a minor,

if not negative, impact on spatial vitality. In contrast, recent studies have begun exploring the

impact of external factors on public space vitality, such as accessibility(Dogan & Lee, 2024; J.

Zhang et al., 2022) , land use (Y. Chen et al., 2016), and economic output (Sander & Zhao,

2015).

Regarding accessibility (measured by WI in this study), our findings support Jacobs' view that

shorter street segments promote greater diversity in community vitality. Building on this, other

scholars have further pointed out that the ideal block size varies depending on the plot and street

dimensions. Rather than designing all blocks and street segments uniformly small, creating

communities with varying street lengths is more beneficial to urban vitality (Dogan & Lee,

2024) . In some studies, transportation accessibility has been identified as a key factor in

controlling regional vitality (S. Guo et al., 2019; Sugiyama et al., 2010) . However, the direction

of its influence, whether positive or negative, has been inconsistent (Ding & Wang, 2024) . This

inconsistency may be related to the inherent complexity of cities, indirectly supporting the

importance of examining multifactor relationships and spatial heterogeneity of variables.

Semi-global factors mainly affect UVI on workdays, with an average bandwidth of 366 and an

area of 42.651 km², which is close to the average township area of 31.74 km² in the study area.

The bandwidth of local factors is 57, with an area of 6.636 km², approximating the neighborhood

scale. Among the local factors, LERNCI (+) > ASR (+) > ALSI (+), indicating that the quality of

development and the complexity of patch structure texture have a greater impact on UV than

quantity. It also demonstrates how the core urban location influences UVI, with land use,

functions, and morphology in developed areas playing a significant role in this process.

MGWR bandwidth calculations show that factors like POP (-), WI (-), VQ (-), RSEI (+), and

GLSI (-) remain consistent across different UVI scenarios on a global scale. Factors such as

population density, accessibility, vegetation quality, and green patch complexity have a

suppressive effect on UV, while areas with high ecological benefits positively promote UV.

6.2.3.2 Factor interactions & risk warnings

Jacobs argued that (Jacobs, 1961) the influence of population density on individual activity

cannot be viewed in isolation, as it is significantly affected by other factors. She stated, "No
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matter how high the residential density of a neighborhood is, if other factors are not in place to

support or promote diversity, high density alone will not be effective. Moreover……without this

condition (high density), other factors promoting diversity will not have much effect either."

Thus, a proper interaction of factors is essential for better fostering urban vitality.

The factor interaction analysis revealed varying intensities of factor combinations between

workdays and weekends. On workdays, the factor interaction intensities are ranked as LERNCI

(+) ∩ ASR (+) > LERNCI (+) ∩ VQ (-) > LERNCI (+) ∩ POP (-). On weekends, LERNCI

(+) ∩ VQ (-) > LERNCI (+) ∩ GLSI (-) > LERNCI (+) ∩ ASR (+). The core interaction

factor is LERNCI (urbanization level), and the combination with other LEF/LSF factors results

in better vitality outcomes.

An in-depth analysis of these factor combinations revealed their complex interrelationships.

Although vegetation quality has the strongest negative influence on UVI, it is necessary to

consider LEF's dependence on LSF to ensure its effectiveness. Further analysis is needed to

determine whether high-LSI green infrastructure fail to effectively enhance overall UV due to a

lack of social function support or because they are located on the urban periphery with

insufficient infrastructure (Yang et al., 2022). The continuous advancement of single factors,

especially internal site factors, is quickly constrained by diminishing marginal returns. In the

context of urban open green infrastructure, Cohen et al. found through comparative experiments

that despite significant financial investment in improving park facilities, park usage rates did not

increase, which was disappointing (Cohen et al., 2009). Similarly, Li et al. found that internal

factors such as park attributes, including park service areas and landscape shape index (LSI), had

a negative impact on park usage (F. Li et al., 2020).

Under the positive influence of LERNCI, the combination of these factors may alleviate the

negative effects of high 3D vegetation density through infrastructure improvements. Currently,

the complexity, vegetation, and scale of green patches attract foot traffic, but their low usage

frequency leads to negative driving effects, a problem that city managers need to address (Hiller,

2007; Sulis et al., 2018). At the same time, this suggests the risk of single-factor development,

with boundary effects such that any single-factor drive does not permanently affect the UV in a

linear fashion. If these factors are not matched with an appropriate level of LERNCI, they may

exert a reverse driving effect on UV.
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Using this feature, reasonable combinations of LERNCI (+) ∩ VQ (-) and LERNCI (+) ∩

GLSI (-) in old city areas can be employed to curb excessive vitality clustering or promote

vitality growth in other areas. At the same time, this type of conversion, which does not involve

the amount of green infrastructure, has better practicability in the core urban areas where land is

tight. In areas surrounding the developed zones, the combination of LERNCI (+) ∩ ASR (+)

provides a clear direction for vitality creation.

6.2.4 Practical guide for planners

Based on the findings of this study, the following key recommendations are provided to assist

urban and regional planners in integrating land functions to enhance urban vitality effectively:

(1) Develop Multi-Center, High-Vitality Zones. Establish multiple localized high-vitality centers

rather than relying on a single-core model. Encourage incremental expansion to ensure flexible

future urban growth.

(2) Prioritize Weekend Activity Patterns in Land Planning. Weekend activities respond more

strongly to land functions than weekday patterns. Designate green spaces, recreational zones, and

mixed-use areas based on peak weekend usage to support urban vitality.

(3) Focus on Social Functions First, then Strengthen Ecological Functions. Initial priority:

Develop social functions (community spaces, commercial areas, public services) to enhance

human interactions and economic activity. Subsequent step: Integrate ecological functions (parks,

green spaces) to improve environmental quality and attract long-term engagement.

(4) Promote Mixed-Use Land Development. Encourage multifunctional land use to avoid

mono-functional areas. Combine social (commercial, residential, cultural) and ecological (green

spaces, water bodies) functions at different urban scales.

(5) Optimize Functional Density in Limited Space. Where land is scarce, increase functional

layering: Vertical expansion (multi-level buildings, green roofs). Efficient road networks

(multi-modal transit integration). Diverse land use within the same area (e.g., mixed-use

complexes).

(6) Address Vitality and Land Function Across Different Scales. Neighborhood scale: Enhance

walkability, ensure balanced facility distribution. City scale: Establish green corridors and public
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service hubs to connect high-vitality zones.

6.3 Study limitations and future directions

This study employs the "Pattern-Mechanism-Response" framework to analyze the spatial

relationships between UV and land functions. By incorporating MGWR and OPGD models, the

study captures spatial heterogeneity alongside nonlinear geographic processes and factor

interactions. The findings rely on Baidu human activity data and current land classification

datasets, which enhance temporal precision and result credibility. However, limitations in

demographic segmentation (e.g., gender, age) may restrict generalizability, making the results

more applicable to Luohe's specific population structure and behavioral patterns.

To improve accuracy and detail, future research should integrate additional data sources, such as

POI and WorldPop data, allowing behavior patterns to be segmented by demographic attributes

and refining insights into different groups’ contributions to UV. Although MGWR explored key

UV drivers, its limited capacity to account for temporal stability may affect long-term policy

implications; thus, Geographic Weighted Time Regression (GTWR) is suggested for more

precise tracking of these dynamic factors.

Due to limited historical data, this study cannot fully examine the temporal evolution of UV and

land functions. Future work should incorporate long-term human activity data and multi-scale

analysis methods to enhance model applicability. Current simulation results also require

extended observation and field validation to assess the model’s effectiveness and robustness.
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